Thursday, April 18, 2019

Process Control in Ring Frame


Process Control in Ring Frame


Introduction
The ring spinning machine was invented in the year 1828 by the American Thorp. In 1830, another American, Jenk, contributed the traveller rotating on the ring. In more than 150 years that have passed since that time, the machine has experienced considerable modification in detail, but the basic concept has remained unchanged. Fig. 1 shows a typical ring frame.
Fig.1 : Typical view of a Ring Frame
The long central section of the machine, on which production is actually carried out, consists primarily of longitudinal members in the form of spindle rails and drafting rollers extending over the complete machine length.
These longitudinal members are secured to intermediate sections arranged at short intervals along the machine length. The sections also serve as supports for the creel .
The ring spinning machine has been the most widely used form of spinning and it will continue for some more time, because it has unique advantage over new spinning technologies:
It is universally applicable, most of the textile fibres can be spun to required fineness.
The yarn spun from this machine demonstrate excellent quality features like uniform structure and good strength.
It is easy to operate as compared to other spinning machines.
The “know-how” for operation of the machine is well established.
It is flexible as regard to quantities in terms of blend and lot sizes.
For these reasons, new spinning processes (with the exception of rotor spinning) have difficulty in gaining wide spread acceptance.
Disadvantages associated with ring spinning are:
More process stages. Roving stage exists as an extra process compared to the other systems.
Yarn breakages are more frequent as a result of ring traveller friction and yarn to air drag forces. Interruptions, broken ends and piecing up problems exist because of the yarn breakages.
The high speed of the traveller damages the fibers.
The capacity of the cops is limited.
Energy cost is very high.
Low production rate.
In long term, the ring frame can survive in longer term only if further success is achieved in automation of the ring spinning process. Also, spinning costs must be markedly reduced since this machine carries significant cost factor in spinning mill.
Operation of the Ring frame
Task of the ring spinning
Attenuate the roving until the required fineness is achieved
To impart strength to fiber strand by twisting it
To wind up the resulting yarn in a form suitable for storage, transportation and further processing
Principles of operation
Fig. 2 shows the operating parts of the ring frame and the principle of operation is explained below:
Fig.2 : Operating Parts of Ring Frame
The roving bobbins (1) are creeled (A) in appropriate holders (3). Guide rails (4) lead the rovings (2) into the drafting arrangement (5) which attenuates them to the final required count.
The drafting arrangement (B) is inclined at an angle of about 45 – 600. It is one of the most important assemblies on the machine since it has considerable influence on irregularities present in the yarn.
After the drafting arrangement, the machine have twisting and winding zone (C).
Upon leaving the front rollers, the emerging fine fiber strand (6) receives the twist needed to give it strength. This twist is generated by the spindle, which rotates at high speed. Each revolution of the spindle imparts one turn of twist to the fiber strand. Spinning of the yarn is thus complete.
In order to wind up the twisted yarn to bobbin mounted on Spindle( 8) , a traveller (9) is required to cooperate with the spindle. The traveller moves on guide provided on the ring (10) encircling the spindle.
The traveller has no direct drive; instead, it is carried along by the yarn it is threaded with. The speed of the traveller is lower than that of the spindle owing to significant friction generated between the traveller and ring.
This difference in speed enables winding of the yarn to bobbin.
Winding of the yarn on to the bobbin is done by raising and lowering the ring rail. The traverse stroke of the ring rail is less than that of the bobbin height. The ring rail must therefore be raised by small amount after each layer of coils.
Cross-section of the machine
Fig. 3 shows the cross-section of a typical ring spinning machine. The ring frames are two sided machines with the spinning positions located on both sides of the machine. Each spindle is a spinning position. The spindle rail houses the spindles. The creel housing the feed roving bobbins are arranged in two rows on each side of the machine. The drafting arrangement is carried on the roller beams. Each intermediate section stands on two feet adjustable in height by means of screws, thereby permitting easy leveling of the machine.
Fig.3 : Cross-section through the machine
In modern machines, an auto-doffer is also provided. Including the auto-doffer, the width of the machine varies from 800 to 1000 mm (up to 1400 mm when the doffer arm is swung out). Today, the machine length can reach 50 m. Spindle gauges usually lie between 70 and 90 mm.

The creel
In design terms, the creel is a simple device. It can nevertheless, influence the performance of the machine as well as the yarn quality by introducing number of faults. In particular, if the roving bobbin does not unwind perfectly, then false draft can arise, or in worst case it may lead to end breakage
Fig.1 : Bobbin suspension Holder
To avoid this problem, the bobbin suspension holders are provided in the machine which is shown in Fig.1. This is provided for each spindle. Each holder has in its lower portion the actual retainer device for the bobbin tube. When the ring is pushed up as far as it will go by the upper end of a tube inserted into the holder, the bobbin retainer swings out; when the ring is pushed up for second time, the retainer is retracted and the bobbin can be withdrawn, for example when it is empty.
The holders are suspended on ball bearings. A light brake arm presses gently against the bobbin to prevent it rotating quickly. Modern creels take up a lot of space in breadth since very large bobbins are used now.
The drafting arrangement
Influence on quality and economics
If the quality is taken as the sole criterion, then the drafting arrangement is the most important part of the machine. It influences mainly evenness and strength. The following aspects are therefore of great significance:
The type of drafting arrangement like the roller configuration
Design of the drafting elements
Precision of roller settings
Selection of correct individual elements
Choice of appropriate draft
Service and maintenance
However, the drafting arrangement also exerts an influence on the economics of the machine – directly through the end breakage rate, and indirectly through the draft level.
If higher drafts can be set in the drafting setup, then coarser roving can be used as feed stock. This implies a higher production rate at the roving frame and thus a saving in roving spindles, i.e. a reduction in the total no. of machines, space, personnel, and so on. On the other hand, increase in draft usually adversely affect the yarn quality.
Draft limits in ring frame
S. No
Material
Draft level
1
Carded Cotton
Up to 35
2
Carded Blend
(Combed cotton and blended yarns)
Up to 40
 
 
 
3
Medium fineness
Up to 40
4
Fine yarns
Up to 45
5
Synthetic fibers
Up to 45 (~50)
The break draft must be adapted to the total draft in each case since the main draft should not exceed 25 to 30. Accordingly, normal break drafts are:
Total draft up to 40 : 1.1 – 1.4 (often 1.14 – 1.25)
Strongly twisted roving : 1.3 – 1.5
Where the total draft exceeds 40 : 1.4 – 2.0
Design concepts in the structure of the drafting arrangement
The ring spinning machines are fitted with 3 line double apron drafting arrangements. They comprise of three lower fluted steel rollers to which the drive is applied. Top rollers carried in a pivoted weighting arm, are arranged above the fluted rollers and are pressed against them.
The strand contains only few fibers when it reaches the main drafting field; accordingly, this is provided with a guide device consisting of an upper and a lower revolving apron.
Fig.2 : Position of top rollers in drafting arrangement
Normally, the top rollers are arranged as shown in Fig.2(a). The front top roller is set slightly forward by a distance relative to the front bottom roller. While the middle top roller is arranged a short distance behind the middle bottom roller. In each case the distance is about 2 – 4 mm. This position gives smooth running of the top rollers; furthermore, the overhang of the front roller shortens the spinning triangle. This has a favorable influence on the end breakage rate.
An alternative roller arrangement is offered by the INA Company in the so-called V-draft drafting arrangement as shown in Fig 2(b). Here, the back pair of rollers are shifted upwards and the back top roller is shifted rearward relative to the bottom roller. The large encircling curve produces an additional fiber guidance zone.
The Top Rollers
Classification
Spinning mills operates with two types of top rollers (weighted rollers):
  • Those supported at both ends (in the draw frame and comber); and
  • Double-boss roller in the roving frame and ring spinning machine.
The second ones are supported in their centre sections by the weighting arm. They can swing slightly relative to the axis of the bottom rollers. They are available in two versions:
  • fixed rollers, with the two pressure bodies (Fig. 3) at left and right forming a rigid unit which can only be rotated together and
  • loose rollers, with the two pressure bodies separately mounted and able to rotate independently of each other.
A distinction is also made according to whether the roller bodies can be removed from the shaft (removable shell), or are permanently attached to the shaft (non-removable shell). The roller bodies are mounted on single-row or double-row ball bearings.
Fig.3 : Top roller assembly
Coverings on the top rollers are made of synthetic rubber. The covering is drawn on to the boss in the form of a short tube under tension, and is glued in place. This operation should be carried out with the utmost care. Covering hardness can be classified into Soft, Medium and Hard roller covers with the following shore hardness values:
Soft
60o to 70o shore
Medium
70o to 90o shore
Hard
above 90o shore
Covering with hardness less than 60o shore are normally unsuitable because they cannot recover from the deformation caused by squeezing out on each revolution of the roller.
Soft coverings have a great area of contact, enclose the fiber strand more completely and therefore provide better guidance for the fibers. However, they also wear out significantly faster and tend to form more laps. Where possible, therefore, harder coverings are used, for example at the entrance to the drafting arrangement. At that point, a compact, self-sufficient strand, with a slight twist, is fed in and does not require any additional guidance.
At the delivery, on the other hand, only few fibers remain in the strand and these exhibits tendencies to slide apart. Additional fiber guidance is therefore advantageous. Accordingly, coverings with hardness levels of the order 80o to 85o shore are mostly used at the back roller, and 63o to 65o at the front roller.
In the case of coarse and synthetic fibers, roller covers with high degree of shore hardness are normally used to avoid of increased wear of roller cover and lapping tendency.
Since the covering wear out, they must be buffed from time to time (after about 3000 to 4500 operating hours). This operation is carried out by special grinding machines. The amount to be removed from the diameter lies in the region of 0.2 mm, but the total covering thickness should never be reduced below 3.5 mm.
Guidelines in selecting the cots
  • For processing combed cotton, soft cots (60 to 65 degree shorehardness) will result in lower U%, thin and thick places
  • There are different types of cores (inner fixing part of a rubber cot)available from different manaufacturers. Aluminimum core,PVC core,etc. It is always better to use softer cots with aluminium core.
  • When softer cots are used, buffing frequency should be reduced to 45 to 90 days depending upon the quality of the rubber cots, if the mill is aiming at very high consistent quality in cotton counts.
  • If the lapping tendency is very high when processing synthetic fibres for non critical end uses, It is better to use 90 degree shore harness cots, to avoid cots damages. This will improve the working and the yarn quality compared to working with 83 degree shore hardness.
  • If rubber cots damages are more due to lapping, frequent buffings as high as once in 30 days will be of great help to improve the working and quality. Of course,one should try to work the ringframe without lapping.
Top roller Weighting
Methods of applying pressure
Three kinds of top roller weighting are presently in use:
Spring weighting (most manufacturers)
Pneumatic Weighting
Magnetic Weighting (available from Saco Lowel)
Load – applying support arms are needed to carry the top rollers in the first two groups. These support arms are mounted on shafts or tubes extending over the length of the machine behind the rollers. They can be swung away from the bottom rollers to release pressure, and towards the bottom rollers to apply it. This pendulum action is carried out with levers.
Pendulum arms with spring Weighting
The double-boss rollers are seated in respective guide arms (14/13, 17/13, 19/13), which are continuously adjustable to each other. For each top roller there is respective spring – for the front roller sometimes two – which presses the top roller against the bottom roller. In the SKF arm (Fig.4), weighting pressure can be simply adjusted in three steps with aid of a key. Color coded makings indicate the setting.
Fig.4 : Top roller loading
Pendulum arms with pneumatic weighting
Fig.5 shows pneumatic weighting used in ring frame. The load applying top arm is stamped from sheet steel and is mounted on a hexagonal tube extending over the length of the machine behind the rollers. The tube contains a pressure hose connected to a central compressor installation. There are three top roller holders in the top arm itself, mounted on two bearing slides. Three holes are provided at to receive a pin acting as a fulcrum.
Depending upon the hole selected, the total weighting pressure, originating at the pressure air hose and acting through a cam on the whole weighting arm, is applied more strongly to the back roller or to the two front rollers. A second hole –and – pin system acting on the bearing slide for the two front rollers enables distribution of the pressure applied to these two rollers also.
Variation in the total pressure applied to all top rollers is obtained through by simple adjustment of the pressure in the hose using a pressure reducing valve at the end of the machine.
Fig.5 : Pneumatic loading
The main advantages of pneumatic loading are:
  • Simple and very rapid central pressure variation;
  • Simple and rapid pressure reduction to minimum when the machine is stopped, so that the roller coverings are not deformed during long interruptions in operation.
Additional expense in relation to the compressed air system represents a disadvantage in comparison with spring weighting.
Fiber Guiding Devices
Double apron drafting arrangements with longer lower aprons
In double-apron drafting arrangements, two revolving aprons driven by the middle rollers form a fiber guiding assembly. In order to be able to guide the fibers, the upper apron must be pressed with controlled force against the lower apron. For this purpose, a controlled spacing (exit opening), precisely adapted to the fiber volume, is needed between the two aprons at the delivery.
Upper aprons, often made up of synthetic material, are always short; lower aprons may be of the same length as the upper aprons or may be significantly longer. They are then guided correspondingly around rolls. Long bottom aprons have the advantage in comparison with short ones, that they can be easily replaced in the event of damage. Also, there is less danger of them choking with fly.

The Thread Path
The yarn produced by twisting at the delivery of the drafting arrangements is guided with the aid of a thread guide to a position directly over the spindle. Before passing to winding up on the spindle, the yarn turns through a second guide position, the balloon control ring. Winding on the spindle itself arises from interplay between the speed of the traveller rotating on the ring and the rotational speed of the spindle.
The later is therefore the third most important machine element, following the drafting arrangement and the ring/traveller combination. Mechanically, the spindle is capable of speeds up to 28,000 rpm, but this maximum speed cannot be exploited commercially because the traveller speed is limited.
Influence of the spindle on spinning
Spindles, and their drive, have a great influence on power consumption and noise level in the machine.
The running characteristics of a spindle, especially imbalance and eccentricity relative to the ring, also affect yarn quality and of course the number of end breakages. Almost all yarn parameters are disadvantageously affected by poorly running spindles. Hence, the mill must ensure at all times that centering of the spindles relative to the rings is as accurate as possible.
Since the ring and spindle form independent units and are able to shift relative to each other in the operation, these two parts must be re-centered from time to time. Previously, this was done by shifting the spindle relative to the ring, but it is now usually carried out by adjusting the ring. Mechanical or electronic devices are used for centering.
Fig 1 : Components of the Spindle
Fig. 2 : Spindle Supports and bearings
The Spindle
A ring frame spindle consists of two separate parts, spindle center shaft and enclosed bearing housing as shown in Fig. 1 and 2 . Usually, the center shaft is made of an aluminum alloy and has slight taper, say 1:64. To ensure that the tube is firmly seated on the shaft, it has a tube coupling at the top. For large spindles there is one more at the bottom.


The bottom end of the shaft is in the form of a cap wharve. It is hollow and can therefore be fitted over the spindle collar accommodated in the bearing housing. The tensile forces generated by the drive belt therefore act directly on the bearing, which favorably influences the smooth running of the spindle. However, the size of the wharve is important as well as its shape. If its diameter can be kept small, equally high spindle speeds can be achieved at lower drive speeds (cylinder/belts). This results in lower energy consumption. However, in order to ensure that the drive belt rotates the spindle slip-free, the diameter of the wharve must also not be too small. Wharve diameters of 19 to 22 mm are common at present. Bearing section is bolted firmly to ring rail by nut.


The spindle bearing consists of 2 parts, a spindle collar bearing and a spindle step bearing. Both parts are connected via housing. The spindle collar comprises a precision roller bearing. The spindle step, designed as a friction bearing (conical bearing), is responsible for the elastic centering and cushioning of the spindle center shaft. Two centering and cushioning elements control the bearing shaft. An oil-filled spiral mounted symmetrically with the spindle step ensures optimum cushioning. Spindle step also absorbs all vertical forces acting on the spindle.


The spindle collar can be a friction bearing or a roller bearing. The noise level can be reduced considerably by using friction bearings, but energy consumption is somewhat higher. Most spindles are therefore equipped with roller bearings. The spindle collar is rigidly friction-set in the bearing housing in standard spindles. Bearing vibration is therefore transmitted to the spindle frame without damping. This results in high noise levels at higher speeds. For speeds over 18 000 rpm, spindles are therefore mostly used in which not only the spindle step, but also the spindle collar is attached flexibly to the bearing housing. These spindles are more expensive, but permit higher speeds and reduce noise levels in ring spinning machines by some 10 dB compared with standard spindles.
Spindle step is always a friction bearing and flexible, i.e. it can tilt sideways to a small extent. The spindle is therefore able to center itself, which enables it to operate in hypercritical ranges. This results in a significant reduction in bearing forces. High-performance spindles are inconceivable without damping devices. Various systems are used, such as damping spirals, damping tubes or damping oil around a steel tube.
If damping spirals are used, spiral spring (a) is compressed at one side when the spindle is deflected to side (b) (Fig. 2). The oil therefore flows from this side to the other side, where the gaps become wider (c). The resistance the oil has to overcome in the process damps the vibration in the spindle step and ultimately in the shaft.
The cavity between the spindle blade and the bearing housing is largely filled with lubricating oil. Since the oil is used up, it has to be replenished from time to time. This is necessary after about 10 000 - 25 000 operating hours.
Spindle Drive
Classification
Basically, three groups of spindle drives can be distinguished,
  • Tape drives
  • Tangential belt drives
  • Direct drives
Tape drives can be further considered under the headings single spindle drives, and group drives, and direct drives under the headings individual mechanical, and individual motor drives.
Short-staple spinning mills use practically only group drives, in the form of the 4-spindle tape drive, and tangential belt drives. The latter type is coming into use to an increasing extent. In comparison with tangential belts, the 4-spindle drive has the advantages of lower noise level and energy consumption, and tapes are easier to replace.
The advantages of the tangential belt drives are,
  • Elimination of drive components under the machines
  • Less disturbance to the air-current under the machine
  • Possibly, a slightly reduced maintenance requirement.
4-spindle tape drive
In this system, a tape drives two spindles on one side of the machine and a further two spindles on the opposite side as shown in Fig.3. In running from the one machine side to the other, the tape passes around a drive pulley. One or two tension pulleys ensure even and firm tension of the drive tape.
Fig. 3 : Four Spindle Tape Drive
Tangential belt drive
Fig. 4 and 5 depict the different types of tangential belt drives for ring spinning. In this drive, a belt extends from the suspended motor past the inner side of each spindle. A plurality of pressure rolls ensures even pressure of the belt on all spindles. Three basic forms must be distinguished: single belt, double belt, and grouped drives.
Fig. 4 : Tangential Drive for the Spindles (a) Double belt (b) Single belt
In the first case, one endless belt drives the spindles on both machine sides. In the second case, two belts are provided, a first belt to drive the spindles on one side and a second belt to drive the spindles of the other side. The double belt system gives better evenness of spindle revolutions. Where the single belt principle is used, differences can arise owing to the considerable variation in tension along the belt. This effect is especially marked in long machines. In grouped drives, groups of spindles are driven by a single belt.
Fig. 5 : Tangential Drive for the Spindles – Grouped drive
Yarn Guiding Devices
Lappets
Fig.6 : Lappets
Mounted directly above each spindle is a lappet designed to lead the yarn centrally over the spindle axis as shown in Fig 6.
The lappet consists of a thread guide made of bent wire ‘o’, and a pivotable support arm ‘k’.
The guide is adjustably mounted on the support arm to enable centering using the centering tool ‘S’, while the arm itself is secured to a lappet rail ‘r’which extends over the length of the machine.
This rail, along with the lappets can be raised and lowered.
During winding of a cop, the lappet rail performs the same sequence of movements as the ring rail, but with a shorter stroke, that is:

  • Continual up and down movement during winding of the layers,
  • Continual upward shift through a small distance in accordance with builder motion.
As shown in figure, this movement guides ensures that differences in the balloon height caused by changes in the ring rail positions do not become too large.
Otherwise, excessive tension variation in the yarn would produce corresponding negative effects on the ends down rates and the yarn characteristics.
Thread guide must be centered from time to time using a setting device which is mounted temporarily on the spindle.
Since the yarn path does not run through the middle of the guide, but on its inner edge, the point of the setting device must be directed towards the inner edge of the guide.
The balloon control ring (BCR)
Spindles used today are relatively long. The spacing between the ring and thread guide is correspondingly long, thus giving a high balloon.
Fig.7 : Balloon Control Ring (BCR)
This has two problems,
  • A high balloon is associated with a large balloon diameter, causing space problems.
  • The large balloon dimensions lead to relatively high air drag on the yarn in the balloon. This in turn caused increased deformation of the balloon curve out of the plane intersecting the spindle axis. This deformation can lead to balloon instability; there is increased danger of collapse.
These above two problems could be nullified by an increase in yarn tension corresponding with a heavier traveller. However, it may cause more end breakage rate.
In order to avoid these problems, balloon control rings are used, each dividing its balloon into two smaller sub-balloons as shown in Fig.7. In spite of its large overall height, the double balloon created in this way is thoroughly stable even at relatively low yarn tensions.
BCRs are also having lifting movements of the ring rail but with a shorter stroke length.
Separators
Most ends down arise from breaks in the spinning triangle, because there very high forces are exerted on a strand consisting of fibers which have not yet been fully bound together. If a break occurs in the triangle, then the newly created free yarn end must be drawn to the cop and wound onto it.
Fig.8 : Separators in Ring Frame
During this process, the broken end thread end lashes around the spindle. In the absence of protective devices, this broken end would be hurled into the neighboring yarn balloon and would cause an end down on that spindle also.
This procedure would be repeated continuously so that a wave of ends down would travel along the row of spindles. In order to prevent this happening, separator plates of aluminium or plastics material are arranged between the individual spindles as shown in Fig. 8.
The Machine Drive
Machine Drive as a problem
About 20% of production costs in a spinning mill fall under the heading “energy”, and of these costs about two thirds are incurred in the ring spinning section. For example, in a ring spinning mill with 25,000 spindles and an operating time of 7000 hours per year, a saving of 10% on an annual power bill of $1 million will bring very interesting financial returns.
Power supplied to the ring spinning machine is absorbed by
The spindles
- 65 to 70%
The drafting arrangement
- 25%
The ring rail
- 5 to 10%
However, technological problems associated with machine drive are still more serious than economic ones. Extreme yarn tension variations occur during winding of a cop and it would be useful to reduce these tension variations by adjusting spindle speed. Fig.1 shows the ring rail movement, yarn tension and ends down occurred in ring spinning operation.
Fig.1 : Pattern of ring rail movement, yarn tension and ends down
During winding of a cop layer, yarn tension rises as the ring rail moves upwards, i.e. from the larger to the smaller winding diameter. The tension increase is significant, e.g. from 24 to 40 cN, and there is a corresponding effect on the number of end breaks.
An investigation shows that most end breaks occur during raising of the ring rail in the upper region. In order to hold yarn tension and the end break rate constant, spindle speed should be reduced during raising of the ring rail (speed variation within the layer).
A similar problem arises in relation to the package build taken as whole. At the start of winding of a cop the balloon is very large, but at the finish it is relatively small. Yarn tension changes accordingly. In this case also adjustment is needed via the spindle revolutions (control of the basic spindle speed).
Previously, both speed adjustments could be carried out with controlled operation of a commutator motor. Today, usually only basic spindle revolutions are adjusted by variators, direct current motors or frequency drives.
The control programme should include at least a starting phase (for avoiding end breaks during starting), a preliminary stage (for winding of the main body of the cop). An end stage is often provided for winding of the uppermost portion of the cop; this can be identical to the preliminary stage.
Motors used in Practice
Motors that are have been used in ring spinning mills are as follows,
  • Alternating current with short-circuited rotors (squirrel-cage motors)
  • Squirrel cage motors with star delta starters
  • Squirrel cage motors with variators
  • Pole changing squirrel cage motors
  • Asynchronous motors with current controlled frequency; converters
  • Alternating current, shunt wound commutator motors
  • Direct Current motors.
As an example, the most commonly used Squirrel cage motors with variators is explained below:
Squirrel cage motors with variators
In this case, speed adjustment is not carried out at the motor itself, but by means of adjustable grooved discs (Fig.2) in the belt drive, similar to a cone transmission. However, whereas in the cone transmission a required change of diameter relationships is effected by shifting the belt axially of the cone drum pair, in the variators the change in diameter is effected by shifting the belt radially on two v-pulleys, each made up by a respective pair of conically-faced disc movable towards and away from each other. If the discs of one pulley are moved apart and those of the other pulley are moved together, the drive belt passes onto a larger diameter of the one pulley, and a smaller diameter of the other.
Fig.2 : Squirrel cage motor drive with variators
The adjustment is effected, usually in steps, by a control device acting via pneumatic or hydraulic pistons and lever mechanisms. The basic speed can be set manually. In Fig.2, Position V1 corresponds to the miimum spindle speed when the winding just begins on the bare bobbin at the bottom most position. It can be noticed that the belt position on the driving pulley is in the lower location. Position V2 corresponds to slightly speeds used to wind in the bottom and top portion of the cop. Here, the belt is in a slightly raised location. Position V3 corresponds to the maximum speed when the winding is being done in the middle portion of the cop. Here, the belt position is at the top most location.
Structure of the cop
The cop form
The cop is characteristic form of package produced by the ring spinning machine. It has three clearly distinguishable parts: the lower, curved base, the middle, cylindrical part, and the conical tip (Fig.3).
(a)
(b)
Fig.3 : Cop structure (a) Structure of the full cop (b) Cop section showing the coils
The package former is a tube of paper, cardboard or plastic material. About 10 mm of the tube is left free of coils at each of the upper and lower ends as shown in Fig3(a). The tube is formed with a slight taper so that it is adapted exactly to the spindle. The specific shape of the cop is built up by super position of a multitude of individual yarn layers disposed in a conical arrangement. Each of these layers comprises a so called main winding and a cross winding as it can be seen in Fig3(b). The main winding, which fulfils the primary yarn take-up function, is formed during the slow rise of the ring rail, whereas the more open cross winding forms during the rapid descent.
Since the cross windings lie at an angle between successive main windings, they isolate the main windings from each other and thus prevent complete layers being pulled off during unwinding.
In comparison with other winding patterns, e.g. the parallel wound roving bobbin, cop build has the disadvantage that it requires a complex mechanism; also, yarn is taken up under constantly changing tension. However, this package form is optimal for unwinding in the rewinding machine, where it permits high winding speeds.
The winding process
The ring rail has to perform two movements; a continuous up and down movement in order to lay one main and one cross winding (traverse cycle); and gradual raising in small steps after each layer movement in order to fill the cop.
Each of the movements has a very undesirable effect on the spinning conditions. In particular, the size of the balloon and the winding diameter on the cop are subjected to continual change. This leads directly to considerable tension variations during winding.
To mitigate this effect, the balloon control rings and the thread guides perform the same movements as the ring rail, but with shorter stroke as regards both traverse and lift.
In the winding of a layer, the ring rail is moved slowly but with increasing speed in the upward direction and quickly but with decreasing speed downwards. This gives a ratio between the length of yarn in the main and cross windings of about 2:1. The total length of a complete layer should not be greater than 5 m to facilitate unwinding. The traverse stroke of the ring rail is ideal when it is about 15-18% greater than the ring diameter.   
The Builder Motion
Fig.4 shows different parts of a typical builder mechanism used in ring frame. The ring rail is suspended by belts from a disc mounted on the shaft; the full weight of the rail is carried by the disc and generates a turning moment. At the other end of the shaft there is another disc; this second disc, acting via the chain and chain drum, presses the level with the roller against the heart shaped eccentric. Owing to the rotation of the eccentric, the lever and the chain drum are continually raised and lowered. This movement is transferred to the ring rail by way of the discs together with the chain and belt, thus giving the traverse movement.
Each time the lever moves down, it presses the catch to release the ratchet wheel, which enables a slight rotation of the drum connected to the ratchet wheel. A short length of chain is thus wound up on the drum. This leads to rotation of the disc, shaft, and disc (b), and finally to a slight rise in position of the ring rail – the lift.
Fig.4 : Builder mechanism in a ring frame
The shaft also carries a third disc from which the balloon control rings and lappets are suspended by belts. These are correspondingly raised and lowered, but since disc C is slightly smaller than disc (b), the stroke length is somewhat shorter.
Building the Base (Fig. 5)
The base of the cop is curved on its exterior in order to enable as much yarn as possible to be taken up on the package. This curvature arises partly from the specific type of winding itself, but is significantly reinforced by a mechanical auxiliary mechanism – the cam (N in Fig.5), thumbs, deflector device or whatever other name the mechanism carries.
As already explained, raising and lowering of the ring rail comes about because the eccentric moves the lever up and down thus the disc is continually turned alternately to the left and to the right. Disc carries the cam, which projects beyond the periphery of the disc and thus forms a lobe of larger diameter than the rest of the disc.
Fig.5 : Drives used in building the base of cop
At the start of winding of cop, disc is located in the position shown in figure. In which the lobe noticeably deflects the chain. The effect of this deflection is that the chain elongation upon rising of the lever is not wholly transferred to the ring rail; part is lost as deflection at N. The traverse stroke of the ring rail is no longer corresponds to the setting, since it is shorter.
However, since the length of yarn delivered during each traverse stroke is the same, the volume per layer is increased, thereby generating the curvature.
Now, in the further course of the spinning operation, the chain take-up disc (T) is steadily turned to the left in small steps by the ratchet wheel; the chain is thereby wound up on the disc and thus shortened.
Accordingly, disc (a) turns to the right in the same small steps and the cam is carried out of line with the chain; finally, the complete elongation of the chain is passed on to the ring rail and thereafter the cop takes its normal build.
The Ring
The significance of the ring and traveller
Fig.1 : Ring and Traveller system
In most cases, the limit to productivity of the ring spinning machine is defined by the traveller in interdependence with the ring, and the yarn(Fig.1). It is correspondingly important for the mill specialist to understand the significant factors and to act on them. Optimal running conditions depend upon:
  • Materials of the ring and traveller
  • Surface characteristics
  • The form of the both elements
  • Wear resistance
  • Smoothness of running
  • Running-in conditions
  • Fiber lubrication.
The form of the ring
Basic forms
These are classified into:
  • Lubricated rings (in woolen and worsted spinning); and
  • Unlubricated rings.
The standard ring of the short staple spinning mill, i.e. the unlubricated type, can be considered under the headings:
  • Single sided rings
  • Double sided rings.
Fig.2 : Single and Double sided rings
Single sided rings(Fig.2a) must be replaced by new ones after they are worn out; a double sided ring(Fig.2b) worn on one side and can be turned over and used on the second side. The later serves for mounting of the ring while the first side is acting as traveller guide.
For rings used in the short staple spinning mill, two dimensions are of prime importance: the internal diameter and the flange width.
Rings are available with the following internal diameters (in mm):
36, 38, 40, 42, 45, 48, 51, and 54.
Standards have been defined in relation to the flange sizes, as follows:
Flange No.
1
1.5
2
Flange Width (mm)
3.2
3.7
4.1
The “anti-wedge” ring
Anti-Wedge ring was the first high performance ring.
It shows on enlarged flange inner side and is markedly flattened on its upper surface.
This change of form permitted use of travelers with a lower center of gravity and precisely adapted bow (elliptical travelers), which in turn allowed operation at higher speeds.
Anti  wedge rings and elliptical travelers belong together and can be used only in combination.  
The “Low-Crown” ring
In this ring, the curvature of the upper surface has been somewhat flattened compared with normal rings (shown in Fig. 3). This gives more space for the passage of the yarn so that the curvature of the traveller can also be reduced and the centre of gravity of the traveler is lowered.
Fig.3 : Low Crown Ring
In comparison with anti-wedge ring, the low-crown ring has the advantages that the space provided for passages of the yarn is somewhat larger and that all current traveller shape can be used, with the exception of the elliptical traveller. The low-crown ring is today the most widely used ring form.
Su-Ring (Fig. 4)
Large surface contact for the traveller on the inner ring flange (better heart transfer)
Compensation of forces acting on the traveller.
Permits high traveller speeds.
Suitable for synthetic fibers.
Reduction in traveller wear.
Fig. 4 : Su-Ring
In fig.10, FzR indicates the tensile force exerted in the upward direction by the yarn. The FFK indicates the force counteracting FzR which arises because the traveler is urged downwards on to the conical inner flange in response to the high centrifugal force.
Material of the ring
The ring should always be tough and hard on its exterior. The running surface in particular deserves the closest attention. The surface layer must have high and even hardness in the range 800 – 850 Vickers. The traveller hardness should be lower (650 – 700 Vickers). So that wear occurs mainly on the traveller, which is cheaper and easier to replace.
Surface smoothness is also important. It should be high, but not too high, since otherwise a lubricating film cannot build up on it.
The following materials are used
  • Flame – or induction hardened steel, to some extent;
  • Nitride steel; this is now rare since ablation can arise owing to the high surface hardness;
  • Carbo-nitrided steel; this is the most common;
  • Chrome steel; this is found more rarely.
Required features for the ring
  • Best quality raw material
  • Good, but not too high, surface smoothness
  • An even surface
  • Good, even surface hardness, higher than that of the traveller
  • It should have been run-in as well as possible (optimal running-in condition)
  • Long operating life time
  • Correct relationship between ring and bobbin tube diameter
  • Horizontal disposition
  • It should be exactly centered relative to the spindle.
Fiber lubrication on the ring
It was initially assumed that cooperation between the ring and traveller involved metal-to- metal friction. The spinner is fortunate that in fact this is not so, since metal-to-metal friction would probably limit traveller speed to about 28-30 m/s.
In reality, the traveller moves on a lubricating film which it builds up itself and which consists primarily of cellulose and wax. This film arises from material abraded from the fibers. If fiber particles are caught between the ring and traveller, then at high traveller speeds and with correspondingly high centrifugal forces, the particles are partially ground to a paste of small, colorless, transparent and extremely thin platelets. The traveller smoothens these out to form a continuous running surface.
The position, form and structure of the lubricating film is dependent upon many factors including yarn fineness, yarn structure, fiber raw material, traveller mass, traveller speed and height of the traveller bow. In spinning of yarns finer than, say, Ne 80, no fiber lubrication can be expected because traveller mass and hence centrifugal force are low. Maximum traveller speed is therefore lower than that in spinning of coarser yarns.
Modern ring/traveller combinations with well functioning fiber lubrication enable traveller speeds in extreme cases up to 40 m/sec.
Running in a new ring
If a worn ring is replaced by a new one, fiber lubrication is absent from the replacement. Over a certain period, only metal-to-metal friction is present at the contacting surfaces of the ring and traveller. This is very critical phase, since the new ring can very soon suffer damage from pitting, and also owing to the risk of welding. Hence, ring manufacturers have established precise rules for this running in phase.
  • New rings should not be degreased, but only rubbed over with a dry cloth.
  • Use either the correct traveller with a 15-20% reduction in spindle speed, or the normal spindle speed with a traveller 1-2 numbers lighter than usual.
  • The first traveller change should be carried out after 15 min.
  • The second traveller changes should be carried out after 30 min.
  • Third traveller change should take place after 1 to 1.5 hrs.
  • The fourth traveller changes are to be made after the second and third doffs.
  • Traveller changes should again takes place after fifth and eight doffs.
Between times, the spindle speed can be increased in steps.
The Traveller
  • The traveller imparts twist to the yarn, and enables winding of the yarn on to the cop.
  • The length wound on to the cop per unit time corresponds to the difference between speed of spindle and traveller. And this should be equal to that of front roller delivery speed.
  • The speed difference due to lagging of the traveller relative to the spindle, since the traveller does not have a drive of its own but is dragged along behind the spindle is known as ‘Traveller Lag’.
  • High contact pressure (up to 35 N/mm2) is generated between the ring and traveller during winding, mainly due to centrifugal force.
  • The pressure induces strong frictional forces which in turn lead to generation of significant amount of heat.
  • This is the kernel of the ring/traveller problem. The low mass of the traveller does not permit dissipation of heat in the short time available. As a result the traveller speed is limited.
Classification
Travellers are required to wind up yarns of very different types: coarse/fine; smooth/hairy; compact; voluminous; strong/weak; natural fiber/synthetic fiber.
These widely varying yarn types cannot all be spun using just one traveller –variety of travellers are needed. Difference are found in: form; mass; raw material; finishing treatment of the material; wire profile; size of the yarn clearance opening for the thread. Spinners must make wise decision according to conditions.
The form of the traveller
Different traveller shapes are shown in Fig. 5
Fig. 5 : Traveller shapes
(a) C traveler; (b) flat traveler (standard traveler); (c) elliptical traveler; (d) N traveler
The traveller must be shaped to correspond exactly with the rings in the contact zone, so that a single contact surface, with the greatest possible surface area, is created between these two elements. The bow of the traveller should be as flat as possible, in order to keep the centre of gravity low and thereby improve smoothness of running.
The following shapes are in use in the short-staple spinning mill:
(a)
C –traveller
(b)
Flat or oval traveller
(c)
Elliptical traveller
(d)
N –traveller
The wire profile of the traveller
Different traveller wire profiles are shown in Fig. 6
Fig.6 : Wire profiles for ring travelers
Wire profile also influences both the behavior of the traveller and certain yarn characteristics, namely;
  • Contact surface of the ring
  • Smooth running
  • Thermal transfer
  • Yarn clearance opening
  • Roughening effect
  • Hairiness
The material of the traveller
The traveller should:
  • Generate as little heat as possible
  • Quickly distribute the generated heat from the area where it develops (the contact surface) over the whole volume of the traveller
  • Transfer this heat rapidly to the ring and the air
  • Be elastic, so that the traveller will not break as it is pushed on to the ring
  • Exhibit high wear resistance; but
  • Be somewhat less hard than the ring, because the traveller must wear away in use in preference to the ring.
In view of these requirements, travellers used in the short staple spinning mill are almost exclusively made of steel. However, pure steel does not optimally fulfill the first three requirements. Accordingly, traveller manufacturers have made efforts over several decades to improve running properties by surface treatment. Suitable processes for this purpose are:
  • Electroplating, in which the traveller receives a coating of one or most metallic layers, e.g. nickel and silver; or
  • Chemical treatment of the surface to reduce friction and pitting.
Traveller Mass
Traveller mass determines the magnitude of frictional forces between the traveller and the ring, and these in turn determine the winding and balloon tension.
If traveller mass is too small, the balloon will be too big and the cop too soft; material take-up in the cop will be low. An unduly high traveller mass leads to high yarn tension and many end breaks. Accordingly, the mass of the traveller must be matched exactly to both the yarn (fineness, strength) and the spindle speed.
If a choice is available between two traveller weights, then the heavier is normally selected, since it will give greater cop weight, smoother running of the traveller and better transfer of heat out of the traveller and better transfer of heat out of the traveller.
The traveller clearer
A yarn consists of fibers that are bound into the structure more or less effectively, but that are in any event relatively short. It is therefore inevitable that as the yarn runs through the traveller, some fibers will be detached.
For the most part they float away into the atmosphere, but some remain caught on the traveller. These retained fibers can accumulate until they form a tuft, and the resulting increase in traveller mass can lead to much increased yarn tension which finally can induce an end break.
Fiber removing devices, so called traveller clearers are mounted close to the ring in order to prevent formation of such fiber accumulations. They should be set as close as possible to the traveller without, however, interfering with its movements. Exact setting is very important.
RING AND TRAVELLER
Ring diameter, flange width and ring profile depends upon the fibre, twist per inch, lift of the machine, maximum spindle speed, winding capacity etc.
Operating speed of the traveller has a maximum limit, because the heat generated between ring and traveller should be dissipated by the low mass of the traveller within a short time available.
If the cotton combed yarn is for knitting, traveller speed will not be a limiting factor. Since yarn TPI is less, the yarn strand is not strong enough. Therefore the limiting factor will be yarn tension. Following points to be considered
1)
For 12s to 24s, 42mm ring with 180 mm lift can be used
2)
For 24s to 36s, 40 mm ring with 180 lift can be used
3)
For 36s to 60s, 38 mm ring with 170 mm lift can be used
4)
For 70s to 120s, 36 mm ring with 160 mm lift can be used.
5)
If winding is a problem, it is better to go for reduced production with bigger ring dia.
6)
Anti-wedge ring profile is better, because of better heat dissipation
7)
Elliptical traveller should be used, to avoid start-up breaks in hosiery counts
8)
Special type of traveller clearer can be used to avoid accumulation of fibre on the traveller as traveller with waste does not perform well during start-up.
For polyester/cotton blends and cotton weaving counts yarn strength is not a problem. The limiting factor will be a traveller speed. For a ring diameter of 40 mm, spindle speed up to 19500 should not be a problem. Rings like Titan (from Braecker), NCN (bergosesia) etc, will be able to meet the requirements.
For spindle speeds more than 20000 rpm, ORBIT rings or SU-RINGS should be used. As the area of contact is more with this ring, with higher speeds and pressure, the heat produced can be dissipated without any problem. Normal ring and traveller profile will not be able to run at speeds higher than 20000 to produce a good quality yarn.
ORBIT rings will be of great help, to work 100% polyester at higher spindle speeds. Because, of the tension, the heat produced between ring and traveller is extremely high. But one should understand that, the yarn strength of polyester is very high. Here the limiting factor is only the heat dissipation. Therefore ORBIT RINGS with high area of contact will be able to run well at higher spindle speeds when processing 100% polyester.
While running 100% cotton, the fibre dust in cotton, acts like a lubricant. All the cottons do not form same amount of lubricating film. If there is no fibre lubrication, traveller wears out very fast. Because of this worn out or burn out travellers, micro-welding occurs on the ring surface,< which results in damaged ring surface, hence imperfections and hairiness increases in the yarn.
Lubrication is good with West African cottons. It may not be true with all the cottons from West Africa. In general there is a feeling, cottons from Russia, or from very dry places, lubrication is very bad. If the fibre lubrication is very bad, it is better to use lighter travellers and change the travellers as early as possible.
Traveller life depends upon the type of raw material, humidity conditions, ring frame speeds, the yarn count, etc. If the climate is dry, fibre lubrication will be less while processing cotton.
Traveller life is very less when Viscose rayon is processed especially semi dull fibre, because of low lubrication. Traveller life is better for optical bright fibres.
Traveller life is better for Poly/cotton blends, because of better lubrication between ring and traveller.
Because of the centrifugal force exerted by the traveller on the yarn, the particles from the fibre fall on the ring where the traveller is in contact. These particles act like a lubricating film between ring and traveller.
Accessories for Ring Spinning
In order to keep the ring spinning machines running efficiently and smoothly, there are some accessories needed in the spinning room. In this lecture, these accessories are discussed.
Travelling clearers
Problem created by dust and fly
In the course of processing staple fibers on spinning machines, many short fibers are lost as fly and a considerable quantity of fiber particles and dust is released. Dust and fly are deposited on machine components and continually agitated by rotating and revolving parts such as spindles, drums and drive belts.
This has always represented a disturbance, particularly in relation to repair and maintained and deterioration in product quality. Incase of increased production speeds and higher drafts, the problem will be worse.
On the ring frame, most fly and dust (up to 85%) is released in the spinning triangle and the main drafting field. The remainder is set free mainly at the balloon and traveller.
Since release of fly cannot be prevented, arrangements must be made for its removal. Previously, this was carried out solely by manual cleaning of the machine elements, but now blowing down equipment is generally used for this purpose.
However it must be noted that blowing down devices do not operate in an optimal manner, since they do not remove dust and fly at the point of generation. Instead, they blow waste off the machine parts and hence whirl it around the machine.
Classification
Cleaning devices can be classified as follows:
Stirrers
Blowing down devices
Suction devices
Combined blowing and suction devices.
The device can be operated as:
Individual installations, i.e. devices for cleaning a single machine; or
Grouped installations, in which a device patrols 2 to 8 machines.
Currently, a very widely used arrangement involves a combined blowing and suction device moving back and forth along an open path in a grouped installation.
Stirrers
These are simple fans with short blowing nozzles, driven by a small electric motor and running on power supply rails above the machines. Nowadays, they are used only above winders since they cannot perform a directed cleaning operation.
Blowing / suction devices
The most widely used form of device today works in the same way as the stirrer, although with much greater power input (~ 3kW; airflow rate ~ 5000 m 3/h; air speed at the nozzles ~ 50 m/sec). The device also has several hoses, some of which hang down to the ground. One or two of these hoses per side work as blowers and the other sucks up material which has been blown down onto the floor.
The blowing hoses are fitted at different heights with blower nozzles aimed directly at prominent parts of the machines so that the airstream tends to blow lint downloads.
Where suction devices are in use, a filter and a filter cleaning devices are also required. Usually the travelling cleaner moves to an end of the rail (machine end) where a collector box is provided into which the material extracted by the filter is ejected.
All collector boxes can be coupled to a central suction system and preferably this feeds a pneumatic bale press. Fig.1 shows the blowing and suction device placed on the ring spinning machine.
Fig.1 : Blowing/suction device used in ring frame
Monitoring
Purpose of the equipment
Monitoring devices continually move around the machines or run back and forth along the one machine side. They can fulfil one or more of the functions listed below
Detect and indicate ends down
Detect and deal with ends down
Detect and register ends down
Detect ends down and evaluate according to number, period for which thread is broken, faulty spinning positions, etc
Determine machine downtime
Determine quantity produced
Determine efficiency
Initiate roving stop after an end break
Determination of machine downtime, production, efficiency and ends down provides the spinner with immensely important information for:
Setting workloads for individual operatives
Evaluation of personnel
Cost accounting
Evaluation of the spinning performance of different raw materials
Evaluation of the production behavior of individual machine components such as rollers, aprons, spindles, travellers, rings, etc
Determining causes of faults, both overall and at each spinning position.
Evaluation of environmental influences
Management of operating personnel to enable the mill to deal with ends down in a directed sequence without unnecessary walking.
Zellweger RINGDATA
A travelling sensor moves continually back and forth at about ring rail level on each side of one machine or on all machines of the installation.
It generates a magnetic field that is affected by the rapidly rotating traveller. Of a thread breaks, the rotation of the traveller ceases and the sensor emits a pulse indicating an end down, while simultaneously identifying the spindle by its code number. Since the sensor moves at high speed, it registers the end down at one spindle several times before the position is returned to production. In this way, the time for which the end remains down can also be established.
Another sensor, fitted to the front roller, detects delivery speed and machine downtime; a further sensor registers the number of doffs and the time taken for each. All this information is passed to a computer with a display screen and a printer. The computer evaluates the information and stores the results of the evaluation over a given period.
The following data concerning individual machines, individual blends or the complete installation can be obtained from the printed reports or by display on the screen:
Machine number
spindle revolution
Date
mean yarn twist
Time
production in Kg
Interval monitored
production in gram per spindle hour
Production period
Efficiency
Downtime
mean period for each end down
Doff times
set maximum number of ends down
Number of doffs
code number of the spindle
Number of ends down
with numbers of ends down above
Ends down per thousand spindle hours
Automatic cop transport
Individual Spindle Monitoring (ISM) System by Rieter
This system features an optical sensor on the ring frame at each spinning position, which monitors the motion of the traveler. It can therefore perform 3 operations:
  • recording ends down (incl. startup ends down following cop changes) and registering spindles rotating too slowly (so-called slipper spindles)
  • convenient analysis and presentation of these data in the SPIDERweb system
  • operator guidance in 3 steps:
    • signal lamps at both ends of the machine indicate when an ends down limit has been exceeded
    • a LED for each 24 spindles indicates that an end is down in this section
    • a LED at each spinning position indicates an end down or a slipper spindle.
This individual spindle monitoring system has distinct advantages:
  • no moving parts
  • no maintenance
  • continuous monitoring of all spindles.
Automation
Textile industry as a whole and ring frame section in particular is labour intensive. With unaffordable labor costs in the developed countries and increasing labour costs in developing countries, automation in the textile industry becomes an important aspect in terms of techno-economical point of view as well as quality point of view. Many operations in the ring spinning section needs skilled workers, which is becoming difficult proposition even in developing countries. In such a situation, maintaining the product quality becomes an issue with the semi-skilled or unskilled workers. In this background, the automation becomes a necessity in many situations.
DOFFING
Preparation for Doff
Although it takes between 2 to 40 hrs to fill a cop, depending up on yarn count, process limitations restrict the weight of the yarn on the cop to the range 50 – 140 gram.
A further disadvantage of the small package is the necessity to remove full cops at quite short span of time and replace with empty bobbins – a fairly costly operation.
In order to ensure that the doff can be carried out efficiently and without causing a large number of end breaks, several preparatory steps must be performed (Fig.1).
After the full bobbins have been prepared for the doff and the ring rail has reached its uppermost position, both ring rail and the balloon control rings are lowered in order to provide better access to the cops.
Simultaneously, the lappets are tilted upwards, since otherwise the cops cannot be drawn off over the tops of the spindles.
The ring rail descends to a so-called under-winding position which is lower than the starting position it will occupy at the start of the next winding operation.
The under-winding position has a special function – it creates a thread reserve. During lowering of the ring rail, yarn is still delivered and forms several coils in a return winding around the finished cop. There should be 3 to 4 coils at the most, and with yarn of high breaking strength possibly only 11/2 to 2.
When the ring rail has reached the under-winding position, the delivery of yarn has still not been terminated; accordingly, several yarn coils accumulate here as bunch.
Fig.1 : Preparation for doffing
In the case of hand doffing, this thread reserve is formed on the tube, and in the case of automatic doffing, on the spindle. The reserve is needed so that when the cop is doffed the yarn is still held on the spindle. Otherwise, a thread break would occur. In modern machines, all these operations are carried out automatically.
Automatic Doffing (Fig. 2)
Classification of doffing installations
A distinction is drawn between two groups of so-called auto-doffers:
  • Stationary equipment that forms an integral part of the ring spinning machine itself; and
  • Travelling carriages that can serve several machines.
The new machines are equipped with automatic doffers; they are almost always stationary devices.
Component parts of the installation
In most cases a stationary installation comprises essentially the following parts
  • A conveyor belt (T) that runs past all spindles on one machine side and carries pegs to receive empty tubes and full cops.
  • A doffing beam (B) also extending over the full length of the machine side and fitted with nipples (Z) insertable into the tubes.
  • A lifting mechanism, usually in the form of a scissors mechanism, for raising and lowering the beam and also for swinging it in and out.
  • A tube preparing and donning device at one end of the machine; and
  • A cop-receiving unit at the same end of the machine.
Click on Image to run the animation
Fig.2 : Auto doffing
Preparation for doffing
All the previously mentioned preparatory operations have to be carried out completely automatically. In addition, special tube preparation is needed at the tube loading station. Some time before the already running cops have been filled, the conveyor belt (T) begins to travel beneath the tube loading station while tubes previously laid out in tube boxes are donned on to pegs carried out by the belt, so that every alternate peg is left is free.
These intervening pegs serve later to take up the full cops. During this step the conveyor belt moves slowly into its operating position in which one empty tube and one empty peg are located in front of each spindle
The Doff
During the whole of the cop winding operation the doffer stays in its rest position. When the cops have been filled the lifting rod swing out the beam (B) while simultaneously raising it. When the uppermost position of the beam has been reached, the rods swing the beam in so that the beam moves over the cops and is then lowered until the nipples engage within the cop support tubes.
Instead nipples, the beam can be fitted with sleeves that are pressed over the upper ends of the cops. Grasping and retaining is effected by inflation of the nipples or sleeves, or of an associated hose.
Once the cops have been grasped the beam is raised, thus lifting the cops off the spindles. The rods swing out, lower the beam and move it over the conveyor. The cops are then seated on the belt. Thereafter the pressure air is vented and the cops are released.
Donning tubes
The beam stays positioned above the conveyor belt but the rods raise it slightly relative to the belt, which then shifts a half-gauge forward so that the empty tubes are brought exactly beneath the nipples.
If the beam is now lowered again, the nipples enter the ends of the empty tubes and hold them fast upon resumption of pressure air supply. The lifting mechanism is now swung out once again, the beam is raised and then swung in above the spindles whereupon the beam is lowered to place the tubes on the spindles and press them firmly in place. Once again, venting of the pressurizing air releases the tubes,
Completion of the doff
During automatic doffing, the procedure is interrupted once or twice for inspection. Correct functioning must be repeatedly checked; in particular, care must be taken that tubes are donned on all spindles and are not jammed.
After completion of the doffing operation, the doffer returns to its rest position under the spindles. Simultaneously, the ring rail is raised to its start spinning position, the balloon control rings are moved up and the lappets down. The machine now restarts while the conveyor belts moves the doffed cops towards the end of the machine where they are ejected into a transport carriage.
End Break Aspirator
The equipment
It is impossible to imagine a modern ring spinning machine without an end break aspiration system (Fig.3). This has variety of functions. At the simplest level, it removes fibers delivered by the drafting arrangement after an end break and thus prevents a series of end breaks on neighboring spindles.
Fig.3 : End break aspirator
At another level, it enables better environmental control, since a large part of the return air-flow of the air conditioning system is led past the drafting arrangement, especially the region of the spinning triangle.
In modern installations, 50% of the return air flow passes back into the duct system of the air-conditioning plant via the end break aspirators.
An end break aspiration installation comprises primarily a central duct (K), extending over the full length of the machine at about the level of the drafting arrangement, and the aspirator tubes (D) leading from the duct to each spinning triangle. The required sub-atmospheric pressure is generated by a fan (V).
The return air stream flows through a filter (F) before passing via the return duct (A) to the air conditioning system. The filter removes fibers drawn in at the aspirator tubes. This filter is advantageously formed as a drum equipped with an automatic clearing device.
Sub-atmospheric pressure and energy consumption
A relatively high vacuum must be generated to ensure aspiration of waste fibers – for cotton approximately 800 Pa and for synthetic fibers approximately 1200 Pa. it must be remembered also that a significant pressure difference arises between the fan and the last spindle.
This pressure difference will be greater the longer the machine, and the greater the volume of air to be transported. The air-flow rate usually lies between 5 and 10 m3 / h.
Accordingly, the energy consumed in fiber aspiration is considerable. It can make up one-third of the power supplied to the machine, and depends upon machine length and air volume involved.
Piecing devices
Fitting each spinning position with its own piecing device would be too expensive. Accordingly, travelling piecing carriages are provided on rails fitted to the machine.
The piecing carriage has to perform mechanically the same rather complicated operations as the operative performs manually:
Watch for broken ends while patrolling the spindles
Stop at the right spinning position
Take up an exact location relative to the spindle
Search for the broken end
Stop the spindle
Bring the traveller into a suitable position for threading up
Thread the yarn through the traveller
Release the spindle
Piece the yarn with the fiber strand issuing from the front rollers.
The complete process is carried out as follows. During its patrolling movement along the ring spinning machine, the FIL-A-MAR monitors each individual position for an end down.
If a yarn is present, the patrol is continued and the next position is checked. If a broken end is detected, the device stops in front of the spindle, swings out a frame carrying the operating elements and centre’s it exactly on the spindle bearing. A further operating unit is lowered onto the ring rail and follows its movements during the subsequent operations. Thereafter, the broken end is blown from the cop upwards into the trumpet-shaped opening of a suction tube; prior to this step, the broken end may located anywhere on the wound circumference of the cop.
A hook grasps the yarn between the top of the tube and the thread guide, in the same way as the operatives hand in manual piecing. This hook lays the yarn on the ring, and the piecing arm joins the yarn to the fiber strand at the front rollers of the drafting arrangement.
The superfluous yarn section is severed and sucked away. The success of the operation is monitored by a photocell. If necessary, the joining operation is repeated once-after that the FIL-A-MAT leaves piecing to the operative.
Piecing devices can be used for simultaneous machine and production monitoring, and also for stopping feed of roving.
Roving Stop Motion
If a thread breaks on the ring frame, the fiber strand continues to run from the drafting arrangement, usually in to aspirator. In poor spinning conditions, however, it often happens that the strand licks around a roller and forms a lap.
This can damage top rollers and aprons, deforms bottom rollers, and/or cause end down on neighboring spindles. Furthermore, removal of the lap is complicated and troublesome.
Fig.4 : Roving stop motion
It would therefore be desirable to interrupt the flow of fibres from the time an end break occurs until piecing is carried out.
In this case, however, the roving must be automatically threaded into the drafting arrangement. Roving stop motions can be provided as part of a travelling device or as assemblies at each individual spinning position.
Fitting to travelling devices is more economical, but since such devices must first seek out an end down, roving stop is not immediate as it is in the case of integrated equipment.
The SKF roving stop motion is described here as representative. The optical monitor checks the running yarn (yarn path). In the even t of an break, the optical unit and the electronic unit cause the wedge to interrupt roving feed.
The feed tables, and possibly twist pins, hold the roving securely in the break draft field. After the broken end has been made ready, wedge is retracted manually by means of the roving blocking device. Roving is delivered again and piecing can be carried out.
Automated Cop Transport
When we look at the manufacturing processes used in the textile industry, spinning involves a mixture of workshop and production line operations, with the workshop the predominant feature. The installation consists of many manufacturing stages forming self-contained departments, with the different intermediate products usually being transported in quite large units from one department to the next and also usually being stored between the different stages. Material therefore hardly flows along the shortest path in regular cycles from a production unit directly to the same downstream operation every time. This type of manufacturing process has four serious drawbacks:
  • high transport costs (more than 60% of a spinning mill‘s wage costs are transport costs)
  • long material lead times (with correspondingly long delivery lead times) and
  • intermediate storage of large volumes of material (substantial amounts of capital tied up)
  • deterioration in quality, damage to the material.
It is therefore hardly surprising that there is a steadily increasing awareness of the importance of transport in spinning mills and among machinery manufacturers and that opportunities for improvement are being sought. Several textile machinery manufacturers are already offering automated transport systems. A distinction has to be made between two types of automated transport equipment between ring spinning machines and winders:
  • interconnected transport and
  • interconnected machines.
Interconnected transport
In interconnected transport an automated transport system (conveyor line) is installed between the ring spinning installation and the winders. The transport system accepts the cop crates – coded according to their contents – at the ring spinning machine and conveys them to a distribution station. This station directs the crates by microprocessor control to their correct destination, a cop preparation unit on the relevant winder. The resulting empty tubes are laid in other crates and return to the ring spinning installation via a second conveyor system. Interconnected transport systems:
  • are very flexible
  • permit operations with small batches
  • can quickly be adapted
  • are less dependent on the building.
However, they can be rather complicated, liable to malfunction and obstructive due to the conveyor lines.
Interconnected Machines
Fig.5 : Interconnected machines
In new installations or older buildings of appropriate and modern design (e.g. Gherzi buildings) more efficient systems can be employed, e.g. by connecting two machines (ring spinning machine and winder) to form a production unit. As shown in Fig.5, in these cases the cops pass slowly, i.e. at the production speed of the winder units, in a direct line to the downstream winder after doffing. Emptied tubes return to the doffer‘s loading station on the ring spinning machine. The number of winder units has to be chosen to ensure that the winding of a doff is completed exactly when the next approaches. This exact coordination of the two machines can be a drawback of the system if there are frequent yarn count changes, since reserve winding capacity - which often remains unused - then has to be installed to provide for every eventuality. This results in higher capital service costs. These systems are therefore ideal when operating as far as possible with only one yarn count.

Latest Development in Ring Frame
The ring frame has under gone significant changes. One of the most innovative developments that have been incorporated on this machine is compact spinning, which is discussed as a separate lecture in the next module. The other significant modern development are discussed further.
Tackling spindle under windings Rieter SERVOgrip
The yarn has to wind several times around the lower end of the spindle to hold it in the spinning position at the time of doffing. These under windings often cause multiple ends down and lead to fiber fly when machine is restarted after doffing. SERVOgrip is a system of doffing ring cop without the under winding threads. The main element of the SERVOgrip shown in Fig.1 is a patented crown gets open while the spindle is still revolving slowly. The yarn gets inserted in the open crown and the crown gets closed afterward. When the cop is replaced, the length of the yarn remains firmly clamped; enabling piecing after machine is started.
Fig.1 : Rieter SERVOgrip
Marzoli wonder cleaner
Marzoli rather uses a wonder cleaner to remove the under wind which is shown in Fig.2. Wonder cleaner with suction unit. This removes under wind only when the ring rail has reached certain minimum height.

Fig. 2 : Wonder Cleaner of Marzoli
To cut the under coil binding on the spindle, it is used a simple metallic cutter which cuts the yarn when the blower pushes it against the spindle. The yarn is reduced in small pieces and then scattered on the floor. This solution is good enough for medium and fine yarn. The wondercleaner is an overhead cleaner with a positive suction unit which perfectly removes the winding of the binding coils for coarse yarn. The spindle cleaner is used with the blower only between doffing cycles, when the ring rail has reached a minimum height. It cuts and collects the underwind yarn coils from every spindle instead of just cut and scatter them in the roam. After the cleaning is performed, the suction activity remains idle (wondercleaner works as a conventional overhead cleaner).
NEW DRIVE CONCEPT
Bottom rollers are subject to material-specific torsion. Calculations and experimental values show that this causes faults during spinning start-up and spin-out as of a certain loading level and a critical bottom roller length. This is taken into account in the Rieter G 35 with a modular drive concept. A single-sided drive is sufficient for short machines with up to 624 spindles. Machines with up to 1200 spindles are driven from headstock and tailstock. The division of the drafting system cylinders in mid-machine as shown in Figure 3 reduces torsion and ensures high running accuracy and drafting action.
Fig.3 : New Drive System of Rieter for Drafting Rollers
Toyota optimizes spinning geometry
The reduction in stretch length and higher spinning angle on Toyota RX240 New ring frame results into higher-speed due to better twist propagation and stable ballooning with reduced yarn breakage. Similarly balloon control ring that moves together with the lappet at the start of winding and then with the ring from about 40% cop winding leads to stable balloon form.
Suessen ACP cradle
As a basic principle, each of the two pairs of rollers in a drafting zone produces a zone of fibre friction by pressure. The fibre condensation caused by this pressure does not only have a vertical effect, but spreads from both sides into the fibre strand (Fig.4). Both fields of friction are finally responsible for fibre guidance and the extent of regularity produced by the drafting process. The two fields of friction should not overlap, nor should their spheres of activity be too far apart.
Fig.4 : Pressure Fields in Roller Drafting
It is beneficial to the draft and degree of regularity achievable, if within a drafting zone the field of friction of the back roller pair reaches as far as possible into the drafting zone to guide the fibres as long as possible. The front field of friction should be short and strong so that only the clamped fibres are drawn out of the fibre strand. This ideal is however restricted by relatively close limits in design as a result of the geometrical conditions.
The high degree of parallelism of the fibres achieved by the preceding steps of drawing, doubling and imparting of twist on the roving frame has in turn the effect that the inter-fibre friction at the cradle clamping line is still high. The drafting force therefore rises considerably at first. It reaches its maximum when the first fibres start to move and static friction turns into kinetic friction.
This process takes place in the main draft zone between the two aprons. As soon as all fibres are moving, the drafting force is decreasing again considerably. This condition is reached in the front area of both aprons up to the clamping line of the front roller pair. Inter-fibre friction is very low in this area (Fig.5).
Fig.5 : Inter-fibre friction in drafting zone
Fibres are therefore dispersing as a result of the drafting process. Such a thin formation of dispersed fibres can absorb only insufficient pressure from the front roller pair and is therefore unable to produce a sufficiently large field of friction. The sector in which the inter-fibre friction of the fibre strand is at its minimum, has a length of at least 15 or 20 mm in current drafting system designs. This explains why this sector cannot contribute any more considerably to open undrafted bundles of fibres and to guide shorter fibres safely. As a rule, this disadvantage cannot be compensated by even closest cradle spacers and very soft top roller cots.
With an additional point of friction arranged in the sensitive sector of the main drafting zone, the aforesaid disadvantages can be eliminated. When the fibre strand, after leaving the double apron guidance, is deflected, the friction field produced by the front roller nipping line is increased and shifted in direction of the cradle opening. Fibre orientation and extension are improved. Parallel fibres still adhering to each other (fibre packages) can now be shifted relatively to each other even in this sector. Consequently, drafting defects are reduced, and the overall regularity of the drafting process is improved. At the same time, the tendency of the fibre strand to spread is suppressed. Inter-fibre contact is increased, and finally this results in a better utilisation of fibre substance and better yarn strength.
By shifting the front field of friction towards the cradle opening, the apron nip can be closer. For this reason, the correct cradle design is important for the interplay with the point of friction. Numerous trials have confirmed again and again that a cradle with flexible leading edge is of advantage in the combination with the bottom apron nose bars offered today, most of which have a steplike design. Such a cradle compensates the practically unavoidable length tolerance of aprons and permits closest apron nips without the dreaded stick-slip movements of the aprons.
A vast amount of trials was required to define the correct position of the friction point in relation to the flexible leading edge of the cradle and to translate this solution into technical design (diameter, coefficient of friction of the surface). It had to be ensured in particular that for all yarn counts both fields of friction can be shifted as closely as possible towards each other without direct contact.
The result of the optimum combination of both – Active Cradle (AC) with flexible leading edge and an optimally arranged pin (P) – is the new ACP Quality Package by SUESSEN for ring spinning drafting systems. As shown in Fig.6, a fibre friction pin is arranged immediately at the cradle spacer of the Active Cradle.
Fig.6 : ACP Quality Package by SUESSEN
Rieter Individual Spindle Monitoring (ISM)
Individual Spindle Monitoring is a quality monitoring system. This system reports faults and anomalies by means of a 3-level light guidance system thus enable personnel to locate the problem spindles without unnecessary searches. Signal lamps at the end of the machine indicate the side of the machine on which ends down rate has been exceeded (level 1). An extra-bright LED on each section guides the operator to the location of the fault (level 2). The indicator on the spindle itself signals ends down with a continuous light and slipping spindles with a flashing light (Level 3).
This system features an optical sensor on the ring frame at each spinning position, which monitors the motion of the traveler. It can therefore perform 3 operations:
  • recording ends down (incl. startup ends down following cop changes) and registering spindles rotating too slowly (so-called slipper spindles)
  • convenient analysis and presentation of these data in the SPIDERweb system
  • operator guidance in 3 steps:
    • signal lamps at both ends of the machine indicate when an ends down limit has been exceeded
    • a LED for each 24 spindles indicates that an end is down in this section
    • a LED at each spinning position indicates an end down or a slipper spindle.
This individual spindle monitoring system has distinct advantages:
  • no moving parts
  • no maintenance
  • continuous monitoring of all spindles.
Zinser Guard System (Roving guard and FilaGuard)
The individual yarn monitor FilaGuard monitors the rotation of the steel ring traveller on each spindle and detects any yarn break immediately. Optical signals indicate the specific yarn break, directing the operating personnel to the spindle of yarn break to rectify the problem. The automatic roving stop RovingGuard (shown in Fig. 7), which responses within milliseconds, interrupts the roving feed in case of yarn break thereby prevents material loss and minimise lapping tendancy.
Fig.7 : Filaguard monitors in Zinser Ring Frame
Multi-motor drive system
Rieter FLEXIdraft
FLEXIdraft flexible drive, eqipped on Rieter G33 ring spinning machine, features separate drives for the drafting system and the spindles. All three bottom rollers of the drafting system are frequencycontrolled and individually driven by synchronous motors. This system enables change in the yarn count, twist and twist direction (S/Z) via, the control panel of the machine. The drafting rollers are split in the centre of the machine to ensure smooth running of drafting operation. On the basis of FLEXIdraft, each drafting system drive can be started or stopped individually via, FLEXIstart system. Thus depending on the machine length, 1-sided or 2 sided drafting system drives are used. FLEXIdraft has a further advantage of noise level reduction due to elimination gear wheels.
Zinser SynchroDrive, SynchroDraft and ServoDraft
Fig.8 : Zinser Modern Ring Frame Drive System
Zinser SynchroDrive is a multi-motor tangential belt drive system as shown in Fig.8. The system employed several motors arranged at defined positions to drive spindles through tangential belt. The consistency in spindles speed relative each other minimizes the twist variation apart from reduction in noise level and minimum power requirement. SynchroDraft transmission is for long machines to drive the middle bottom rollers from both ends, consequently minimizes twist variation between gear end and off end of the machine. Zinser ServoDraft system employs individual motors for driving bottom rollers of the drafting system. Hence yarn count and twist change can be done by simply feeding required parameters at the control paner of the machine that adjust the motors speed accordingly.
Zinser OptiStep and OptiStart
OptiStep is a system of adjusting spindle speed in 10 different ranges through out the cop build on Zinser ring spinning machines. The start-up, tip and main spinning speeds can be defined with a 10 point speed curve. Similarly OptiStart (optional) is a running-in programme for ring travellers to perform the running-in phases of the ring travellers with precise accuracy up to production speed. Hence the traveller service life is substantially extended.
Zinser OptiMove
Zinser uses separate electric roving guide drive OptiMove to traverse the roving guide (shown in Fig. 9) . This is claimed that top rollers wear is reduced and service life is increased significantly. The roving guide drive can be easily set using inductive proximity switches.
Fig.9 : Zinser OptiMove for Roving Guide Traverse
Toyota ElectroDraft System
The Toyota ElectroDraft system (optional) features independence servo motors drive for front and back rollers. The spindles are also driven by separate tangential drive system where one motor drives 96 spindles. Thus the required draft and yarn twist can be set via, control panel.
Toyota Servo motor-driven positive lifting mechanism
Toyota’s proprietary crew shaft positive lifting mechanism is used to on RX240 New ring rail lifting motion. This eliminates disparity in the ring rail motion during long periods of continuous operation. The different cop parameters like chase length, cop diameter, winding start position, bobbin diameter (bottom and top), total lift, etc, can be fed via, key operation of the machine panel.
Compact Spinning
Why compact spinning?


In conventional ring spinning, fibres in the selvedge of strand emerging from front roller nip do not get fully integrated into the yarn because of the restriction to twist flow by the spinning triangle. These fibres show up partly as protruding hairs or as wild fibres.


The spinning triangle exists because of higher width of the strand as compared to final yarn diameter. Further the fibres are tensioned to varying extent depending upon their position in the spinning triangle. As a result full realization of fibre strength is not achieved in the yarn.


The hairiness gives a rough feel to the yarn. Variation in hairiness is a source of weft bars and warp way streaks in the fabric. Long protruding hairs from the yarn contribute to multiple breaks in weaving and fabric faults like stitches and floats.


This problem is solved by applying the compact spinning systems that increases yarn quality. It is carried out by means of narrowing and decreasing the width of the band of fibres which come out from the drawing apparatus before it is twisted into yarn, and by the elimination of the spinning triangle. It can be used for spinning both short and long staple yarns.


The compact spinning process produces a new yarn structure, which approaches the ideal staple fibre yarn construction even more closely. This has positive effects on raw material use, productivity, downstream processing, and on the product appearance.
Factors Affecting The Spinning Triangle
The twist that is transmitted to the yarn in the ring spinning process originates along the curve between the traveler and front drafting rollers. Transmission of twists is opposite to the yarn movement in this area. The traveler transmits twists to already drafted fibres as close as possible to the clamping point after the front rollers. However, the twists never reach the clamping point, because after leaving the front rollers the fibres tend to direct towards yarn axis. The different lengths of the path of the inner and outer fibres that form the yarn cause a spinning triangle in ring spinning.
If the spinning triangle is too short (a), then the fibres on the edge must be strongly deflected to bind them in. This is not possible with all fibres, and lost as fly. Thus with shorter triangle, smaller weak point resulting into fewer end breaks but makes the yarn hairy. On the other hand, a long spinning triangle (b) implies a long weak point and hence more end breaks giving smoother yarn and less fly.
The length of the spinning triangle depends on spinning geometry and twisting intensity. The form and dimensions of the spinning triangle significantly influence the structure, surface characteristics, physical and mechanical characteristics of spun yarn. Not all fibres that are placed at the external edges of the triangle can be spun into the yarn structure, and can leave the drafting equipment without having been spun into the yarn. Such fibres also increase yarn hairiness.
Figure 1: Spinning triangles (a) Short (b) Long and (c) Side View
The spinning triangle is the critical weak spot of the spinning process. The spinning triangle prevents the edge fibres from being completely incorporated into the yarn body. However, in compact spinning, the drafted fibres emerging from the nip line of the front roller of the drafting arrangement are condensed in a line.
Conventional Ring Spinning vs. Compact Ring Spinning
Ring-spun yarn is not perfect. If the enlarged view of ring spun yarn is examined, it is easy to see that the integration of many fibres is poor, and they therefore make no contribution to yarn strength as shown in Figure 2. In other words, if all fibres could be completely integrated in the yarn, both strength and elongation could in turn be further enhanced. It is thus obvious that even ring-spun yarns are not yet ideal as regards yarn structure
Figure 2 : Spinning triangles in ring and compact spinning.
The development of the compact spinning process began with the desire to achieve a significant improvement in yarn quality by influencing the spinning triangle (Figure 3). The process is focused on achieving higher yarn strength and a reduction of yarn hairiness, especially on eliminating the longer hairs, which have a particularly bad influence on the further process.
The improvement achieved is shown in the Figure 3. The Fig 3(a) displays the fibre triangle at the exit of a conventional ring frame drafting system. The twist imparted by the spindle cannot flow up to the clamping line. The outer fibres spread out and are thus more highly tensioned than those on the inside. The Fig 3(b) does not show a spinning triangle. The yarn twist flows right up to the clamping line. The yarn is round and smooth. 
Figure 3 : Conventional (a) and compact (b) ring spun yarns
Minimization or even elimination of the spinning triangle, enables almost all fibres to be incorporated into the yarn structure with maximum possible length and pre-tension of the fibres, irrespective of their position in the spinning triangle. The uniform pre-tension of the majority of fibres enables more synchronic breakage of the majority of the fibres, which contributes to higher yarn strength and better utilization of the fibre tenacity.
All compact yarns, whether produced of short-staple fibres (cotton, cotton-type chemical fibres and their mixtures) or long-staple fibres (wool, wool-type chemical fibres and their mixtures) rep­resent a whole new range of yarns as re­gards their quality and appearance. When compared with conventional ring-spun yarns, compact yarns have significantly higher tenacity and elongation, work to break, and abrasion resistance. In addi­tion, their surface smoothness, elasticity and softness are much better thanks to the almost ideal structure of compact yarns. To achieve tenacity comparable with conventional ring-spun yarns, a lower number of turns per meter can be used, which enables higher productivity of the spinning machine, as well as better elasticity and softer hand of different flat textile products.
Methods of compacting fiber strand
In compact spinning the mass of fibres is condensed before twist is imparted. This condensation happens in so called 'Condensing Zone' following the main drafting zone. Different machine manufactures are using different methods to condense the fibres emerging out from the front roller. These methods are:

1) Aerodynamic compacting system: a) Suction by drum and b) Suction through perforated apron.

2) Mechanical compact system.

3) Magnetic compacting system.
Aerodynamical compacting system
In this methods the condensation of the fibres strand take place with help of perforated drum or apron. The examples of aerodynamical compacting system are Com4Spin® of Rieter, Elite® Compact Spinning by Suessen, CompACT3 by Zinser, Com4®wool by Cognetex, Olfil system by Marzoli, Toyota's compact spinning, etc.
The Rieter Com4 Technology
The Rieter compact spinning solution is based on aerodynamic parallelization and condensation after the main draft zone. At the heart of this technology is the perforated drum through which suction is obtained to create air currents to condense the fibres coming out of the main draft zone. The main features of this technology are the perforated drum, the suction system, and the air guide element. The setup of the system is shown in Figure 4.
Figure 4 : Cross section drafting unit in Rieter Compact Spinning
The drafting system is 3/3, with the third bottom roller being replaced by the perforated drum (1). The suction is created in the perforated drum with the help of the suction system (2). The drum is directly driven, and is made of materials which have high wear resistance and also resistant to fibre clinging. The drum helps in condensing the fibres. For guiding the fibres from the nip of the drafting cylinder to the spinning triangle, a guided lateral stream of air is used. For this the air guide element (6) is used. The air guide element also helps in the further condensation of the fibres in the compacting zone. The profile of the perforated drum and the arrangement of the 3rd top roller with the nip roller and the perforated drum are shown in Figure 5.
Figure 5 : Profile of top roller and perforated drum
After the compacting has been done, the fibre strand needs to be twisted. Hence the spinning triangle is formed, which results in deterioration of the orientation of the fibres leading to hairiness, loss of fibres due to fly generation, etc. Therefore, another nip is given between the Nip roller (5) and the perforated drum, which doesn’t allow the twist to travel up to the compacting zone reducing the length of the spinning triangle, and thus leading to reduction in the above-mentioned occurrences. Also due to compacting and condensation the base of the spinning triangle b(Figure 6) reduces when compared to normal ring spinning. This technology is also expensive, due to the fact that suction has to be provided to each individual drum.
Figure 6 : Operating principle of Rieter Com4 Technology
The SUESSEN EliTe System
The Suessen EliTe system comprises of a normal 3/3 roller drafting system (Figure 7), with a pair of aprons on the middle rollers (2). The condensation zone consists of a Profile tube (9), a lattice apron (3), and the top delivery roller (6). The top delivery roller drives the lattice apron. The air permeable lattice slides over the suction tube (9) having an inclined slot in the region (7-8). The profile tube is stationary. The drafted roving comes into the condensation zone, where with the help of the inclined slot and the apron they are condensed up to the point 6 – 8.
Figure 7 Drafting arrangements in SUESSEN EliTe System
The inclined slot in the profile tube as shown in Figure 8 helps in the inclusion of outer fibres into the yarn because of the tranverse force being applied on the condensed fibres. The air being drawn in through the suction slot helps in the rotation of the fibres about their axis which results in better orientation of the fibres and as a result majority of the fibres are aligned and compacted leading to reduced hairiness, more strength and elongation, etc.
Figure 8 : Profile tube having inclined slots
The lattice apron is an essential part, and has to be designed appropriately. The lattice has small perforations, which doesn’t allow the fibres to be sucked in. The lattice fabric is made, in case of cotton spinning, of a cotton fabric of simple weave having around 3000-holes/ square cm. Also the lattice moves slightly faster than the delivery giving a small drafting leading to optimal fibre orientation and axial tension. The lattice moves faster, due to greater diameter of roller 6 than top roller 4a. Also the spinning triangle formed here is very small as the twist given travels right up to the clamping line 6-8. Thereby the end breakages and the fly generation are now reduced as the weak point i.e. the spinning triangle, has nearly been eliminated.
Advantages of Elite® Compact Yarn

1) Higher work capacity by 30% (max).

2) Higher yarn strength by 20% (max).

3) Better elongation by 20%.

4) Lower hairiness by 85% (max) Zweigle S3.

5) Better yarn evenness.

6) Lower imperfection value (IPI).
The Zinser CompAct Technology
The drafting system (Figure 9) consists of the normal 3/3-roller system, with aprons on the middle rollers for better fibre control, and thus allowing processing of a larger variety of raw materials. The condensing zone starts from 4 till 4-4a. The top roller 4 is covered by the endless apron with a set of holes in the middle. This apron runs over a profile tube having a suction slot in the region H1-H2. The fibre bundle is condensed under suction on the perforated surface of the apron in the zone H1-H2. In between the zone H1-H2 and 4-4a, the fibre bundle is not under any suction effect, and thereby loses some of its condensed form and orientation. Therefore at the nip line 4-4a, the spinning triangle is not reduced to the minimum as in the case of EliTe, thereby negatively influencing the quality of the spun yarn. This effect is observed more prominently while handling shorter staple fibres.
Figure 9 : Drafting and condensing zone
Also the suction slot here is not inclined as in EliTe, and is directed in the fibre bundle axis. A small axial tension draft is given here also between the zones 4 and 6, which improve the adhesion and the compacting of the fibre bundle. .
Advantages of CompACT3 yarn

1) The UT4 hairiness for carded cotton CompACT3 yarn is 20% lower as compared to conventional ring spinning. The S3 hairiness value according to Zweigle reduced by 93% (max).

2) Yarn irregularities (Zellweger Uster) show improvements of 6% (max).

3) 25% (max) lower IPI values (Zellweger Uster).

4) 20% higher tenacity values compared to the values of conventionally spun yarns.

5) Productivity increase at the spinning machine is 10% (max) through increasing the spinning speed and/or reducing the yarn twist.

6) Extension of the spinning limit by 15% (max).
Mechanical Compacting System
Mechanical Compacting Spinning (MCS) is given by Officine Gaudino for long staple. This compact system makes the compact yarn without the use of air. The compacting of the fibre strand is carried out with smooth bottom front roller and an angled top roller. Officine Gaudino offers long staple spinning machine (Model FP 03) with mechanical compacting system. This compacting system does not require the additional suction system. The MCS consists of an additional smooth bottom front roller and an angled top roller. These rollers run at a slightly slower speed than the front drafting rollers and this 'negative draft', coupled with offset top roller, creates false twist which compacts the drafting strand as it comes out from the compacting zone. This system can be incorporated into the new machines and is claimed to be easily added or taken off the spinning frame.  
The LMW Magnetic Compacting or The Rotorcraft Compacting
This technology from Lakshmi Machine Works is based on the RoCoS principle of magnetic compacting. The need of any perforated drums, endless aprons, suction tubes, etc are removed by this system.
The RoCoS device (Figure 10) consists of a cylinder (1), front roller (2), delivery roller (3), the precision ground and with supra-magnets equipped ceramic compactors (4), the supporting bridge (5), the yarn guides (6), and the top roller holders with the weighting springs (8).
The bottom roller has very precise flutes and radius exactly corresponding to the compactor radius. The bottom roller (1) supports the front roller (2) and the delivery roller (3). The precise magnetic compactor (4) is pressed against the cylinder. A and B are the two nips between which the compacting takes place.
Figure 10 : Components of RoCoS device
The magnetic compactor (4) as shown in Figure 11 is pressed against the cylinder without any clearance against cylinder (1), thereby forming with the bottom roller an enclosed compression chamber where the bottom contour, i.e. the generated surface of the cylinder (1) moves synchronously with the strand of fibres and transports these fibres safely through the compactor. Therefore in the chamber formed, the compacting of the fibre bundle takes place, due to magnetic forces. The condensation of the fibres takes place to such a degree so that the formation of the spinning triangle is prevented while twisting of the fibres takes place.
Figure 11 : Schematic diagram of Magnetic compactor
As a result the power required for this compacting is very small as compared to the previously mentioned technologies. The only problem with this technology is that the size of the front and the delivery roller is considerably smaller, which leads to increased fiber lapping and problems in serviceability. Also the cost of this technology is very high.
Yarn Tension in Ring Spinning
Fig.1 : Forces acting on traveler during steady running conditions
The power provided by winding tension in the spinning system is expended by means of the following ways.
I. To overcome ring traveller friction.
II. To overcome yarn traveller friction.
III. To overcome the resistance of air to the rotation of

a) A loop of yarn between thread guide and the traveller.

b) The portion of yarn between the traveller and the package.
Assuming that the traveller contacts the ring at one point only, the conditions for equilibrium are:
Balancing the horizontal components
From the Fig. 1,
Fig.2 : Yarn tension as a function of angle of lead, α
Yarn path in winding zone
If the yarn is assumed weightless and there is no air drag and if the yarn axial velocity is neglected then the yarn would lie in a straight line. Fig. 3 shows the yarn path in winding zone.
Fig.3 : Yarn path in winding zone
Tangential component of the yarn tension is constant from traveller to the package. In practice, the effect of the weight of the yarn, air drag and the velocity of the yarn along its length have to be considered.
Mass Consideration (Fig. 4)
Centripetal force is required on each element of yarn to keep the yarn rotating.
Here TU – Changes in the unwinding tension measured above the thread guide
Fig.4 : Effect of mass on yarn tension
Tension in the yarn keeps increasing as it moves towards the package as shown in Fig. 5. The moment, about the axis of the tangential component of the tension must be constant. Since no air drag or Coriolis forces are considered.
Fig.5 : Tension in the yarn during package formation
Air drag consideration
To overcome the effect of air drag, there must be a net tangential force on each element in the direction of rotation.The moment of the tangential component of tension increases from traveller to package (shown in Fig. 6)
Fig.6 : Effect of air drag on yarn tension
Yarn Axial velocity consideration (Fig. 7)
The kinetic energy of rotation of each element of yarn is decreased as the yarn goes from radius R to R1.
Fig.7 : Effect of yarn axial velocity on yarn tension
The moment of tangential component about the axis must decrease from traveller to package.

Spinning Balloons
A finite balloon can be formed only when there is some mechanism for maintaining a tension in the yarn. Fig.1 shows the relation between centripetal force, tension and work done.
Fig.1 : The relation between centripetal force, tension and work done
Tv – Rate of doing work
2T = mrω2 ......................................(1)
Centrifugal force merely balances the tension existing in the yarn. In ring spinning, the main source of tension in yarn is the friction between ring and traveler.
A circularly polarized vibration is obtained when the string is made to vibrate simultaneously in two mutually perpendicular plans at the same frequency with a phase difference of 90 0. Fig. 2 shows the plane and circularly-polarized stationary waves on a string.
Fig.2 : Plane and circularly-polarized stationary waves on a string
H is the balloon height for half cycle; T o is the tension in the yarn balloon at the lappet guide(in newtons); m is the per unit length (in kg/m); f is the frequency (in s -1); ω = angular velocity.
In spinning balloons, it has considerable amplitude. Hence, there is no unique velocity of propagation. The wave length of vibration decreases with amplitude of vibration as shown in Fig.3.
Fig.3 : Wave-length of stationary waves on a string as a function of the ratio of the amplitude of vibration to the wavelength
There is, of course, an infinite number of possible balloon profiles, and some of the family of sine-wave curves indicated by the relation of Fig.3 are shown in Fig.4.
Fig.4 : Profile of circularly polarized transverse vibrations of a stretched string
Nature of Spinning Balloons
A spinning balloon of any kind is, in equilibrium, essentially a stationary wave system formed by circularly – polarized transverse vibrations of a string.
For small transverse waves in strings,
Stationary wave patterns are formed in string with both ends fixed when the length is an integral number of half wave length.
Shape of the Spinning Balloon
The force acting on the yarn in the balloon lie in the axial plan (Fig.5) when,
Fig.5 : Balloon shape in the absence of air drag
  • There is no air drag
  • Velocity of the yarn along its length is negligible when composed to rotational velocity.
  • The friction between the yarn and lappet is negligible.
  • Yarn stiffness is negligible.
m = mass of yarn per length
ω = angular velocity
T = Tension
Fig.6 : The forces acting on an element of yarn in the balloon
Consider the forces acting on an element of yarn in the balloon as shown in Fig. 6. The conditions for equilibrium are:
δ (Tcosθ) = 0 ..............................................(4)
δ (Tsinθ) = - mrω2δs .....................................(5)
sinθ=dr/ds ..............................................(6)
From 4
δT/T=tanθδθ ..............................................(7)
From 5
- mr ω2δs= Tcosθ δθ+ sinθδT.............................. (8)
From 7 & 8
mr ω2δs = - δT/sin θ .............................................. (9)
From 6 & 9
mr ω2δrs = - δT .............................................. (10)
Integrating 10
½ mr2ω2 = - T+ constant
or T = To – ½ mr2ω2 ...............................................(11)
From 4
Tocos θo = Tcosθ ..............................................(12)
From 11 & 12
Cosθ (To– ½ m ω2r2) = Tocosθo
But we know p2=To/m ω2
Cosθ(P2– r2/2)=P2cosθo ..............................................(13)
or cosθo / cosθ=1-1/2 (r/p)2 ........................................(14)
This equation provides the inclination of the yarn at any radius and thus enables the exact shape of the balloon curve for a given θo.
Effect of air drag
Air drag force = ½ C1ρµ2d for smooth cylinder placed normal to the air stream.
C1 = drag coefficient
ρ = density of air
µ= air speed
d=diameter of the cylinder
The primary effect of air drag is that work must be done to rotate each element of yarn. Each element must be acted upon by a force with a moment about the axis i.e. with a tangential component (Fig. 7).
Fig.7 : Effect of air drag on the shape of the balloon
  • At the lappet, the tangential component of tension is zero at the traveller. It must be such that its product with the circumference of the ring is equal to the total work done per rev in rotating the loop of yarn between the traveller and the thread guide.
  • As a result of differences in the tangential components, yarn will be inclined to the axial plan.
  • Air drag acts at an angle to the axis of the yarn.
  • There will be vertical component of air drag acting downward.
  • Air drag has stabilizing effect on balloon shape against mass variation.
Effect of Air drag on Multiple Balloons
  • In the absence of air drag true node forms since there is no tangential component when the height of balloon is great enough.
  • In the presence of air drag the radius of rotation of each element must remain finite, as the work done is tangential component times the circumferences of rotation.
  • A true node cannot form instead to a neck of finite radius is formed (Fig. 8).
Fig.8 : Effect of air drag on multiple balloons





Forces acting on the traveller

Conditions at the traveler in the plane of the ring

Figure 1 :The forces acting at the traveller
As the traveler is pulled along the ring surface by the rotating yarn balloon, the following forces act on the traveler (1) in the plane of the ring (2) as shown in Figure 1:
  • Fn is the horizontal component of Fn (The normal reaction force between ring and traveller) shown in Figure 4. Fn = FnCosβ ( β is the same as in Fig.1 of Lecture 3.10)
  • A tensile force FF, which arises from the winding tension of the yarn and always acts at a tangent to the circumference of the cop (3).
  • A frictional force FH between the ring and the traveler. In the stationary state, i.e. with constant traveler speed, this braking force FH is in equilibrium with the forward component FT of the yarn tension FF (same as TU in Lecture 3.9) . Hence we have (Eqn. 1)
In this treatment, the yarn tension in the balloon TT (in lecture 3.9) is not included.

Changes in the force conditions

Continuous variation of the operating conditions arises during winding of a cop. This variation is especially large with regard to changes in the winding diameter, i.e. when wraps have to be formed on the bare tube (small diameter), and then on the full cop circumferences (large diameter).
This occurs not only at the start of cop winding (formation of the base); such changes arise at very short intervals in each ring rail stroke as shown in Figure 2.
Figure 2 : The tensile force (FF) on the yarn; (a) with a large cop diameter (b) with a small cop diameter (bare tube)
It has already been mentioned that tensile force FF must be assumed tangential to the cop circumference because it arises from the winding point. Frictional force FH undergoes only small variations; it can be assumed to be the same in both cases.
The components FT of the yarn tension are then also equal. However, owing to the difference in the angle α the tensile forces FF are different. The same dependence of the tensile force FF on the angle α can be seen from the formulas given above.
The result is that the tensile force exerted on the yarn is much higher during winding on the bare tube than during winding on the full cop diameter because of the difference in the angle of attack of the yarn on the traveler.
When the ring rail is at the upper end of its stroke, in spinning onto the tube, yarn tension is substantially higher than when the ring rail is at its lowest position. This can be observed easily in the balloon on any ring spinning machine. If the yarn tension is measured over time, then the picture in Figure.3 is obtained.
Figure 3 :Changes in yarn tension due to changes in winding diameters
The tube and ring diameters must have a minimum ratio, between approximately 1:2 and 1:2.2, in order to ensure that the yarn tension oscillations do not become too great.
Conditions at the traveler in the plane through the spindle axis
These conditions were formulated by Professor H. W. Krause and Dr. H. Stalder, of ETH, Zurich.
Figure 4 : Resolution of forces at the traveler: (a) in elevation (b) in plan
The influence of the yarn on the traveler can be expressed in terms of two forces (Figure 4). One of these is tensile force FF, acting at an angle α to the x-axis. The other is a force FB, which arises from the balloon and can be assumed as tangential to the balloon curve. In Figure 4 FR indicates the component of FF in radial directions
This force draws the traveler upwards at an angle γ to the y-axis. Thus the traveler is drawn upwards at an inclination by the resultant force FL of the two components (FB + FF). As the ring rail goes up and down, the angle δ therefore undergoes substantial variations.
Furthermore, the traveler is subjected to the forces FZ (centrifugal force) and FN (normal force). The weight of the traveler can be ignored here.
At constant traveler speed, the three forces FL, FZ, and FN are in equilibrium, i.e. they intersect at point P and form a closed triangle (Figure 5).
Figure 5 : The resultant tensile force FL on the yarn

Changes in the conditions

Figure 6 : Raising and lowering of the traveler raising, caused by the greater force FL
The traveler straightens up. When the ring rail moves down, the tensile forces are reduced, the balloon widens out, and the yarn slips towards the middle of the curve in the traveler. The free end of the traveler tilts slowly downwards on the left-hand side.
In addition to these tilting movements, the traveler also performs a so-called rolling motion. If the yarn moves upwards in the traveler (Figure 7), the point of attack of the yarn on the traveler moves away from the contact surface with the ring.
Figure 7 : Raising and lowering of the traveler lowering, caused by the reduced force F L
The yarn acts on the upper portion of the curve in the traveler, which is thereby drawn out of the vertical with an inclination to the left. In the reverse effect, when the yarn in the traveler approaches the ring more closely during upward movement of the ring rail, i.e. as the yarn moves downwards relative to the traveler, the latter straightens up again (Figure 8).
Figure 8 : Varying inclination of the traveler on the ring; a) upright; b) inclined
This variability in the movement of the traveler is not good in terms of friction conditions; on the other hand, the traveler needs this freedom to enable it to adapt to the varying forces and to take up impact.

Conditions at the traveler in the tangential plane

Figure 9 : Resolution of forces with an inclined balloon

Balloon Tension

The yarn tension in the balloon (FB) is the tension which finally penetrates almost to the spinning triangle and which is responsible for most of the thread breaks in practice. It is reduced to a very small degree by the diversion of the yarn at the thread guide.
An Equilibrium of forces must be obtained between yarn tension FF and balloon tension FB. Since the yarn is diverted at the traveler and friction arises there, this equilibrium is given in Eqn. 5
FF = FB x eμε ................................................ (5)
Where ε is the base of natural logarithms (2.718), μ is the coefficient of friction between the yarn and traveler, and εis the angle of wrap of the yarn on the traveler. The value of eμε generally lies between 1.2 and 1.8. The balloon tension FB is therefore a little more than half the winding tension (FF).
Figure 10 : The balloon tension
Yarn tension FV (Figure 10) at the point of maximum diameter in the balloon can be derived approximately from the following formula given by Professor Krause (Eqn. 6)
FV = k x ω2L x H2 x σ ........................................ (6)
Where ωL is the angular velocity of the traveler, H is the height of the balloon, σ is the specific mass of the yarn, i.e. (yarn mass/yarn length)≈tex, and k is a constant.
Thus, for a given yarn count, the yarn tension in the balloon is strongly dependent upon the traveler speed and the height of the balloon. High traveler speeds, and greater balloon heights, lead to very high yarn tensions in the balloon.

Effects on the traveler

All of the forces mentioned here act on the traveler. Since the forces themselves and their angles of attack are constantly changing, the attitude of the traveler on the ring is also changing.
These analyzable variations are reinforced by sudden sharp forces arising from the balloon or from the friction conditions between the ring and the traveler.
Quiet, uniform, stable running of the traveler is therefore impossible. This is one of the great problems in ring spinning.
A still bigger problem is the development of heat. Since the traveler has no drive of its own but has to follow the spindle, its movement must be braked. However, braking without generation of heat is not possible.
Accordingly, very high temperatures arise in the traveler. They reach more than 400°C. The problem here is actually not so much the generation of heat as its dissipation. The mass of the traveler is too small to enable it to transmit the heat to the air or to the ring in the time available.
These various explanations show that it is not easy to achieve considerable improvements in the interplay of the ring, traveler, and yarn under present conditions.
Even with complete new designs of ring and traveler as introduced by the Rieter company, the traveler speed is limited to about 50 m/s (180 km/h).

Structure of Ring Frame Yarn Packages
In Lecture 19 on ‘Drive systems’ in Ring Spinning machine, the mechanism used for building the ring frame packages, known as cops, was discussed. But, the actual yarn placement inside the package was not discussed in that lecture. It is important to understand this, since it will affect the unwinding behavior of these packages in the next step, namely the winding. Hence, the structure of the cops is discussed in detail.
Build of cops
The cop as shown in Figure.1 comprises of three visually distinct parts – the barrel like base A, the cylindrical middle part W, and the conically convergent tip K. It is built up from bottom to top from many conical layers as shown in Figure.2, but constant conicity is achieved only after the formation of the base.
Figure 1 : The cop as a yarn package
Figure 2 : Building up the cop in layers
In the base portion itself, winding begins with an almost cylindrical layer on the cylindrical tube. The initial layers are conical in shape, thicker at the base and thinner at the tip. With the deposition of one layer on another of these conical layers, the conicity gradually increases.
Each layer comprises a main layer, also called as winding layer and a cross-layer, also called as binding layer which are shown in Figure 3. The main layer is formed during slow raising of the ring rail, individual coils being laid close to each other or on each other.
Figure 3 : Main layers and cross layers
Figure 4 : The winding mechanism
The main layers are the effective cop filling layers. The cross layers are made up of widely separated steeply downward-inclined coils of yarn and are formed during rapid lowering of the ring rail.
They form the separating layers between the main layers and prevent pulling down of several layers simultaneously, known as slough off when yarn is drawn off at high speed in back winding machines. In the absence of such separating layers, individual yarn layers would inevitably be pressed into each other and layer-wise draw-off of yarn would be impossible.
Raising and lowering of the ring rail is caused by the heart shaped cam and is transmitted by chains, belts, rollers, etc. to the ring rail. The long flat part of the cam surface forces the ring rail upward, slowly but with increasing speed. The short steep portion causes downward movement that is rapid but with decreasing speed.
The formation of the base
The heart-shaped cam and the delivery roller are coupled together by the drive gearing. Thus, the length of yarn delivered for each revolution of the cam is always the same. But, due to the presence of the cam N (Figure-4) between the tape and the pulley during the initial stages of cop building, the lift or the height of the layer is shorter to start with. The position and design of the cam N is selected such that the height of the layer increases gradually, till it is moved totally away from getting in contact with the tape. This is attained by winding of the tape on the Drum T for each double layer formation. Once this stage is reached, the heights of the further layers do not change till the end.
Figure 5 : The formation of the curvature at the cop base
Therefore, the volumes of the individual double layers need to be equal. Deposition of double layers on the tube begins with a small average layer diameter d1. The average diameter increases gradually with each newly deposited layer.
With constant layer volume and increasing height of the layers in the beginning, this can have only one result, namely a continual reduction of the layer width from b1 to b2 to b3, and so on till the height reaches fixed level.
Since the ring rail is also raised by a constant amount ‘h’ after each deposited layer, it follows that curve, rather than straight line, arises automatically in the base portion.
The formation of the conical layers
It has already been mentioned that the ring rail is not moved uniformly. Its speed increases during upward movement and falls during downward movement. At the tip of each layer it is higher than at the base of the layer that is the ring rail does not dwell as long at the tip as it does at the base – less material is wound, the layer is thinner at the tip.
If it is assumed by way of example that the ring rail is moving twice as fast at the top of its strokes as at the bottom of the stroke, the first layer would be half as thick at the top as at the bottom, i.e. b1/2instead b1.
Figure 6 : The formation of the conical layers
The first layer would correspond to a trapezium with the side b1 at the bottom and the side b1/2 at the top. This is followed by the deposition of the second layer. Owing to the lifting of the ring rail, the upper portion of the new layer would again be deposited on the bare tube.
The average diameter at the top would be the same as that of the first layer, and the volume, and hence the thickness, would also be the same, that is b1/2.
Each newly deposited layer will have this thickness of b1/2 at the top. At the bottom, however, the diameter is increasing continually, the layer thicknesses decline from b1 to b2 to b3 to b4… Accordingly, continually narrowing trapezia are produced.
At some stage, the trapezium will become a parallelogram, i.e. the lower side will be the same size as the upper side: both will be b1/2. Since all other winding conditions now remain the same, no further variation can now arise in the layering.
One conical layer will be laid upon the other until the cop if full, that is when the cylindrical portion of the cop is formed.
The gearing change wheel has little influence on this sequence of events. If too many teeth are inserted, the final condition of constant conical layers will be reached too soon and the cop will be too thin. It will be too thick if the ring rail is lifted too slowly.
The winding Process
The winding Principle
As in the case of the roving frame, two components with different speeds must be used in order to enable winding to occur. One assembly is the spindle, the other is the traveller representing the remnant of the flyer.
Also, the speed difference must be equal over time to the delivery length at the front cylinder. In the roving frame, each assembly has its own regulated drive. In the ring spinning frame this is true only for the spindle. The traveller is dragged by the spindle acting through the yarn.
The speed of the traveller required to give a predetermined speed difference arises through more or less strong braking of the traveller on the running surface of the ring. Influence can be exerted on this process by way of the mass of the traveller.
Variation in the speed of the traveller
In ring frame winding, diameter of winding changes continually with raising and lowering of the ring rail, since the winding layers are formed conically. The traveller must have different speeds at the base and the tip.
Assuming for example a spindle speed of 18,000 rpm, the layer diameters of 46mm at the base and 25mm at the tip, and a delivery of 25 m/min, the traveller speed at the base will be,
Variation in the Yarn Twist
The equation is generally used to calculate the number of turns in the yarn. As just established, this is not wholly accurate since the turns arise from the traveller and not from the spindle.
In the given example, 173 turns per minute are missing at the base of the winding on the cop (larger diameter), and 318 turns per minute at the tip (smaller diameter). However, these missing turns are a theoretical rather than a practical problem, for two reasons.
Firstly, the inaccuracy of measurement in estimation of yarn twist in instruments is greater than this twist variation. Secondly, the yarn finally receives its full twist in any case. This happens as soon as the yarn is drawn off the cop over the end, since each rotation of the yarn about the tube leads to insertion of an additional turn in the yarn. The compensation of the missing turns can then be explained easily.
If 318 turns per minute are missing at the top, and 25 m of the yarn to be wound up in this period, the result is
Drm = 318 /25 = 12.73 turns / m
During unwinding, each yarn wrap on the cop (one circumference) produces one additional turn. At the tip (cop diameter 25 mm):
Dra = 1000 mm/min / 25 mm = 12.73 turns /m.
That is, exactly the number of turns previously missing. Care must however be taken that cops are always unwound over end, even during twist tests.
Yarn Twist
Direction of twist
Twist is produced in the yarn with the aid of spindles, rotors, rollers, and so on. Since two twist directions, left and right, are always possible, the fiber windings can also have two directions. The direction of the twist is indicated as Z- or S-twist depending on the transverse orientation of the fibers, i.e. the orientation relative to the diagonals of the letters Z and S (Fig.1). Z-twist is normally used in short staple spinning, though in some cases yarns with S-twist are also produced.
Fig.1 : Types of Twist
Twist and Strength
The strength of a thread twisted from staple fibers increases with increasing twist. In the lower portion of the curve (Fig.2), this strength will be solely due to sliding friction, i.e. under tensile loading the fibers tend to slide apart.
Cohesive friction arises only in the middle-to-upper regions of the curve. This is caused by the high tension, and thus high pressure, and finally becomes so considerable that fewer and fewer fibers slide past each other and more and more are broken.
This continues up to a certain maximum, i.e. to the optimal exploitation of the strength of the individual C) - is dependent upon the raw material.
Fig.2 : Effect of Yarn Twist on Yarn Strength
Normally, yarns are twisted to levels below the critical twist region ( A – knitting, B – warp); only special yarns such as voile ( C) and crêpe ( D) are twisted above this region.
Selection of a twist level below maximum strength is appropriate because higher strengths are mostly unnecessary, cause the handle of the end product to become too hard, and reduce productivity. The last effect arises from the equation:
Yarn Twist (Twist Per Meter - TPM) =
Since the spindle speed is always pushed to the maximum possible limit (and thus may be considered as constant), higher yarn twist can only be obtained through reduction in the delivery speed and hence in the production rate.
Deformation of the yarn in length and diameter
  • Fibers can be wound in spirals around other fibers only by increasing their length through exploitation of fiber elongation.
  • When a fiber is extended, its elasticity tries to draw it back. This constant tendency to return to the unextended condition results in a high tension directed towards the core and thus to increase pressure continually towards the yarn interior.
  • These tensions cause the strong compression, and hence great density of the yarn body. The compression leads to a reduction in the diameter of the yarn.
  • Diameter is thus inversely proportional to twist. However, the tendency to relax also leads to shortening of the yarn (twisting-in, spinning-in).
Fig.3 : Influence of Yarn Twist on the Degree of Shortening
The same effect is produced by the inclined disposition of the fibers relative to the yarn axis. Hence, the length of the spun yarn never corresponds to the delivered length measured at the front roller.
The degree of shortening is also dependent upon the raw material and especially upon the number of turns. Fig.3  shows how the degree of shortening depends upon the yarn linear density and the twist .
Twist formulas
To elucidate several relationships involved in twisting, two yarns are considered below in a theoretical model. One yarn is assumed to be double the thickness of the other. Consider for each case a single fiber f and f', respectively (Fig.4). Prior to twisting, these fibers lie at the periphery on the lines AC, A'C', respectively.
Assume that the yarns are clamped at the lines AG (A'G') and CD ( C'D') and are each turned once through 360°. Then the fibers take up new positions indicated by the lines AEC and A'E'C', respectively. Each fiber can adopt this helical disposition only if its length is increased. However, owing to the greater diameter of yarn II, the extension of fiber f' must be significantly higher than that of fiber f.
The difference becomes clear if the yarns are rolled on a plane, whereupon two triangles ( ABC and AB'C') are derived, each with the same height H. Fiber f has extended from H to l , while fiber f' has extended from H to L. The greater extension in yarn II also implies greater tension and thus more pressure towards the interior. The strength of yarn II is considerably greater than that of yarn I.
Fiber extensions in the yarn can be measured only with difficulty, so that they cannot be used as a scale of assessment of the strength to be expected. Such a scale could, however, probably be provided by an angle, for example, the angle γ of inclination to the axis. From the above considerations, it follows that yarn II has a higher strength than yarn I. Yarn II also has a greater inclination angle γ than yarn I.
The strengths ( F) are proportional to the inclination angles:
In other words, the greater the angle of inclination, the higher the strength. If the two yarns are to have the same strength, then the inclination angles must be the same, so that (all other influencing factors being ignored here). This is only possible if the height of each turns in yarn I is reduced from H to h.
In the given example, yarn I must therefore have twice as much twist as yarn II (Fig.5).
Fig.4 : Winding of two fibers (f and f’) in yarns of different thickness
Fig.5– Number of turns of twist in thin yarns
Derivation of the twist equation
Fig.6 : Number of turns of twist in yarns of different thicknesses
If the two yarns are illustrated on a somewhat larger scale, the situation of Fig.6 is obtained. The following relationships can be derived:
Yarn Structure
The characteristics of a yarn are strongly dependent upon the properties of the fibers used in the yarn, but they are equally dependent upon the structure of the yarn itself. The following factors are especially significant:
  • the number of fibers in the yarn cross-section
  • fiber disposition
  • fiber alignment
  • position of the fibers in the strand (e.g. long fibers inside, short outside)
  • binding-in (fully or only partly bound-in)
  • overall structure
  • Twist
Number of fibers in the yarn cross-section
This determines, among other things, strength, evenness, handle, insulating capacity, thread-breakage rate, and the spinning limit of the raw material. Accordingly, there are lower limits to the number of fibers in the cross-section, as follows (for normal conditions):
 Cotton yarns ring-spun yarn: combed 33 fibers


carded 75 fibers

rotor-spun yarn: carded 100 fibers
Synthetic fiber yarns ring-spun yarn: carded 50 fibers

rotor-spun yarn: carded 100 fibers
The spinning limit can then be calculated approximately by transposition of the equation:

Fiber disposition

The following are some of the preconditions for optimal exploitation of fiber strength, and for an optically satisfactory appearance of the yarn with a corresponding handle of the product:
high degree of stretching-out (straightening);
highest attainable degree of parallelism;
regular arrangement of the fiber ends relative to each other Fig.1(a) ;
an even distribution of all fiber belongings to different length groups Fig.1(b)
Binding-in of the whole fiber, including if possible both fiber ends, into the yarn structure.
Figure 1 : Regular arrangement of fibres relative to each other
Furthermore, in yarns which have not been produced by using adhesives, the helical winding of all, or at least some (wrap yarns) of the fibers is of decisive importance, since ultimately the stability and strength of the structure are derived from the pressure towards the interior exerted by fiber windings, which are created by the twist.
The Positions of the fibers in the yarn structure

Ring-spun yarns

Figure 2 : Twist Structure of the Ring Spun Yarn
Owing to the twist, all or some of the fibers take up the required helical disposition. The number of fibers affected by the twist, and the degree of winding, are strongly dependent upon the spinning process.
In ring-spun yarns, twisting takes place from the outside inwards. At the periphery (the outer sheath A, Fig.2), owing to the greater degree of winding, the fibers have a lesser inclination, ( γ = angle between the fibers and the axis of the yarn) than in the interior of the yarn (the core B).
Since the fibers become steadily less tightly wound towards the core, ring-spun yarn may be said to have sheath-twist. Under loading, the outer layers will tend to take the radial forces and the inner layers will tend to take the axial forces.
However, by increasing pressure inwards, the radial forces reinforce axial resistance to sliding apart of the fibers. Accordingly, fully twisted yarns with sheath-twist have high tensile strength but are not so resistant to abrasion.
Under abrasion the outer, highly tensioned fibers are destroyed. Since these fibers hold the yarn together, the strand loses its cohesion. Hairiness on the yarn surface is mainly caused by protruding shorter fibers.
Yarn Structure
One aspect of structure is the visual appearance, created solely by the peripheral layer of the yarn, and a second aspect is the internal and external make-up. Yarn structures are very variable. The differences are partly deliberately caused, depending on the intended use of the yarn, but for the most part they are predetermined by the means available.
For example, it is difficult to produce a yarn equivalent to a ring-spun yarn by the new spinning processes – and the ring-spun yarn still represents the standard of comparison (Table.1).
The yarn structure is dependent primarily upon the raw material, spinning process, spinning unit, machine, machine settings, twist, etc. The structure can be open or closed; voluminous or compact; smooth or rough or hairy; soft or hard; round or flat; thin or thick, etc.
 
Ring spun yarn
Open – end yarn
Airjet yarn
Wrap yarn
Classic
Compact
Rotor spun
Friction spun
Jet spun, 2 nozzles, False twist process
Vortex spun, one nozzle
Filament wrapped
Fiber disposition
In the core
Parallel, helical
Parallel, helical
less Parallel, helical
less Parallel, helical
Parallel w/o twist
Parallel w/o twist
Parallel w/o twist
In the sheath
Parallel, helical
Parallel, helical
More random, less twisted
less Parallel, helical
6% of fiber twisted around core in spirals
20% of fiber twisted around core in spirals
Filament winding
Fiber orientation
Parallelism
Good
Very good
Medium
Low
Medium
Good
Very good
Compactness
Compact
Very compact, round
Open
Compact to open
Compact
Compact
compact
Handle
Soft
Soft
Hard
Hard
Hard
Medium to hard
Soft
Hairiness
Noticeable
Low
Very low
Low
Some
Low to medium
Very low
Stiffness
Low
Low
High
High
High
Fairly high
Low
Table 1 : Fibre arrangement in different types of yarns
But yarn structure is not simply appearance. It has a greater or lesser influence on:
  • handle;
  • strength;
  • elongation;
  • insulating capacity;
  • covering power;
  • ability to resist wear, damage, strains, etc.;
  • resistance to abrasion;
  • ability to accept dye;
  • tendency towards longitudinal bunching of fibers;
  • Wearing comfort, etc.
Figure 3 shows yarn surface structures arising from different spinning technologies.
Figure 3 : Surface Structure of different types of yarns.
Fiber Migration
Owing to their different characteristics, the fibers take up different positions in the body of the yarn. Grouping arises mostly during drawing.
Thus, long fibers are often located in the core, since they exhibit more cohesive friction, and therefore higher resistance to the draft, and remain in the interior. Short fibers are often found on the yarn exterior. This tendency is reinforced by fiber migration (wandering of the fibers), since the fibers do not always stay in the positions they first take up.
For example, if any traction of power (even minimal) acts on the yarn, highly tensioned fibers of the outer layers press inward wholly or partly (the fiber ends, for example). In doing so, they press out the lower-tensioned fibers from the interior.
Migration takes place from the sheath to the core and vice versa. Such migration is, of course, most prevalent during yarn formation but still occurs after yarn formation is completed.
When the smallest forces are exerted on the yarn, e.g. during bending, tensile loading, etc., the persisting tensions in the fibers constituting the yarn lead to continuation of the process of fiber migration even after the completion of yarn formation.
For example, the short fibers work their way to the surface and are then partly rubbed off. Moreover, some fibers in the body of the yarn lose their helical dispositions during fiber migration; this effect is more prominent the shorter the fibers and the more random their arrangement.
In addition to its dependence on length, fiber migration is dependent upon degree of elasticity, stiffness, fineness, crimp, etc. Short, coarse, stiff fibers move out towards the sheath while long, fine, flexible fibers move towards the core.
Strongly crimped fibers are also found predominantly in the sheath, since they can exert greater resistance to binding-in. Fiber migration should be adequately taken into account in determining the composition of blends.
Possibilities for imparting strength
In order to obtain strength in the yarn, which consists of individual fibers of relatively short length, the inherent strength of one fiber must be made wholly or partly transferable to another. In principle, there are two alternatives: adhesives and twist.
Total exploitation of the inherent strength of the fibers can be achieved only by using adhesives, as was done, for example, in the Twilo process. The adhesive effect can be produced by means of adhesive substances or adhesive fibers (polyvinyl-alcohol fibers).
Since this process can be used only for a small market segment, twisting of the fiber strand remains the sole possibility for imparting strength, even for the future.
Figure. 4 : Imparting strength to the yarn by twist
The extension of the fibers that arises during twisting leads, via the associated fiber tension, to increased pressure directed towards the yarn interior, i.e. to an increase in the frictional forces between the fibers and thus finally to the desired, immensely strong coherence of the body of the yarn (Figure 4). Fiber strands that are not held together by adhesives cannot completely exploit the inherent strength of the individual fibers.

Process Control in Ring Spinning
Process control in the ring frame section is important since it affects the properties of the final yarns directly. Long-term variation should not be normally introduced by the ring frame, assuming that all ring frames have the same draft, roller grip is adequate and no slippage occurs. It should be ensured that all ring frames of the same make and running in the same count have the same change pinion and back roller wheels. As far as possible, a pinion change shall be avoided in ring spinning.
Between-Bobbin Variation
A high correlation exists between count variation of between-bobbins and the total count variation. A positive correlation of lesser extent is noticed between ‘within-bobbin’ variation and total count variation.
Frame to frame differences in count due to varying pinions or back roller wheels are found to be present in some mills.
Count also differs significantly between days which can be attributed to changes in relative humidity, incorrect pinion changes and also shifts in the average weight of lap.
Differences in hank between machines in the preparatory department and channelizing of material are the other sources of count variation.
Adequate attention is not paid by some of the mills to the proper feed of the creel bobbins. Sometimes, the creels are fed diagonally and beneath the roving bars, as a result of which undue stretch occurs.
Damaged skewers, accumulation of lint in the creel and trumpet, mis-shaped trumpet, improper back zone draft or weighting of top roller can also cause roving stretch. The presence of creel draft variation can be checked by marking each rove end close to the bobbin.
An advanced mark indicates slack roving and coarse count and a receding mark points to excessive stretch and fine count.
Excessive variation in tension between bobbins due to differences in spindle speeds, spindle-out of centre etc., can also result in between-bobbin variation. Slippage of top rollers due to poor lubrication or insufficient weighting is also one of the causes for count variation.
Strength Variation in Ring Frame
Strength variation could be largely dependent on count variation. It is observed that about 50% of the variation in strength as well as about 50% of the variation in strength CV mainly due to count variation.
The contribution of the CV of count to the CV of strength would be about 1.5 times the CV of count.
Variation in humidity is one of the major causes for the relatively higher strength variation.
Some of the causes for the relatively high strength variation are excessive yarn unevenness, difference in twist, mechanical imperfections in drafting like eccentric rollers, worn aprons, inadequate top roller pressure in draw frames and ring frames etc., and thick and thin places arising from the spindle vibration.
Yarn Irregularity:
Table.1 provides the norms for Yarn Unevenness (U %) for different counts of carded and combed yarns. The major process parameters that affect the yarn irregularity are as follows:
Material
Count
Good
Average
Poor
Carded
20s
12.0
13.5
15.0
30s
12.5
14.0
15.5
40s
14.5
16.0
17.5
60s
15.0
16.5
18.0
80
16.0
17.5
19.0
Combed
30s
11.0
12.0
13.0
40s
12.0
13.0
14.0
60s
12.5
13.5
14.5
80s
13.0
14.0
15.0
100s
13.5
14.0
15.5
Table 1 : Norms for Yarn Unevenness (U %)
Setting between the rollers
In order to avoid the creation of drafting waves and to reduce short term irregularity (U %) of yarn, proper roller settings must be adopted. A back zone setting of 55 mm for fibers with length up to 30mm and a back zone setting of 60 mm for fibers with length greater than 30 mm will help to produce yarns with minimum irregularity.
Top roller Pressure & Shore Hardness
Insufficient loading of top rollers leads to erratic movement of the fibers due to fiber slip between the drafting rollers. This, in turn, will lead to high level of short term unevenness of yarn.
Studies show that a top roller pressure of 18 kg (for cotton spinning) improves yarn evenness by 1 U% and reduces thick and thin places by 15 to 40% in different counts as compared to the 9 kg pressure.
Use of soft cots (shore hardness of 70 o to 75 o) generally improves yarn quality by reducing slip between the cot and the bottom fluted roller.
Soft cots with a top roller pressure of 18 kg counts below 50s and 15kg, in counts finer than 50s will result in improved yarn quality.
Draft distribution
The total draft and break draft employed in spinning influence the amount of irregularity added in spinning and depend on the quality of roving and condition of the ring frame.
Break draft in ring frame is mainly to break the mild twist in the roving. Higher the break draft, greater will be the fiber breakage at the back zone. If the TM in the roving is higher, then comparatively higher break drafts could be employed. While using higher break draft the back roller setting should be wider to obtain good results.
The recommended levels of break draft for different twist levels in roving are given below in Table 2.
TPI in Roving Break Draft in R/F
1.38
1.2
1.94
1.3
2.35
1.4
Table 2 : Break Draft in Ring Frame for different Roving TPI
Apron Spacings
Cradle opening in ring frame contributes to the tune of 60 to 80% of the incidence of thick and thin places and slubs in the yarn.
Wider the cradle opening, lesser will be the control of fibers between aprons leading to thin places in the yarn.
Narrower the cradle opening, greater will be the strain on the fibers between the aprons, leading to the increased fiber damaged and resistance to drafting which will result in undrafted ends in the yarn.
The recommended spacer for different counts in ring frame are given in Table 3.
Count (Ne)
Apron Spacer (mm)
Up to 20s
4.0
21s to 40s
3.5
41s to 80s
3.0
Finer than 80s
2.5
Table 3 : Apron Spacer for different Yarn Counts
DEFECTS and CAUSES
Ring Frames
Uneven Yarn
  • Inadequate pressure on top rollers
  • Damaged or worn rings, heavy or light travellers.
  • Defective and worn gears, bearings and spindles.
  • Close setting of traveller clearers and rough surface of separators.
  • Non-alignment of aprons.
  • Improper top roller settings.
  • Lappet and spindle setting not correct
  • Bottom rollers eccentric and vibrating, and lapping on rollers.
  • Apron with cracks, seams and grooves.
  • Long roving piecing.
  • Too wide or too close a back zone setting.
  • Improper use of break draft.
  • Broken or damaged roving guide.
  • Obstruction or vibration in the movement of roving traverse.
Between-bobbin count variation
  • Variation of average lap weight over long intervals.
  • High cm to cm variation in lap.
  • Excessive variation in tuft size.
  • Use of three passages in post-comber drawing.
  • Stretch in draw frame sliver fed to roving.
  • Frequent changes of pinion in drawing and ring spinning
  • Improper roller space settings.
  • Improper use of break drafts in breaker and finisher passages.
  • Excessive stretch in roving due to improper function of builder mechanism in speed frame.
  • Unequal shifting of cone drum belt while the formation of roving layers.
  • Wrong selection of winding ratchet wheel.
  • Lower twist in roving.
  • Variation in bare bobbin diameter.
  • Row to row differences in roving hank.
  • Spindle vibration in ring frames.
  • Draft differences between ring frames.
  • Creel draft variation and skewers/bobbin holders clogged with waste.
  • High variation in relative humidity.
  • Variation in top roller pressure.
Within-bobbin count variation
  • High card sliver U% and comber sliver U%.
  • Roller slippage in drawing
  • Excessive web tension draft in drawing.
  • Ratching in roving
  • High tension draft.
  • Excessive pinion changes in ring spinning.
  • Use of long separator plates at high spindle speeds
  • Low humidity levels.
Crackers in the Yarn
  • Mixing cottons differing widely in staple length
  • Too close a setting in ring spinning
  • Worn or unbuffed top rollers and eccentric top or bottom rollers.
  • Improper stopping and starting of ring frames.
  • Incorrect apron nip opening
  • Inadequate top roller pressure.
  • Loose top/bottom apron
  • Improper cradle holders.
Thick and thin places in yarn
  • High fiber length variation and immature fibers.
  • Poor carding or combing
  • Uneven roving.
  • Eccentric top and bottom rollers in ring spinning
  • Insufficient pressure on top rollers.
  • Wide setting between aprons; broken, worn and slack aprons
  • Too high a draft in ring frame
  • Worn rings
  • Too close a setting between traveller clearer and traveller.
  • Improper setting of tension bar
  • Excessive fly liberation in ring frame.
  • Damaged top/bottom roller clearers
  • Jerky movement of ring rail
Slubs in the Yarn
  • Excessive short fibers in the mixing
  • Inadequate fiber individualization in cards
  • Improper piecing in roving
  • Variation in top roller pressure in ring frames
  • Poor housekeeping and fluff accumulation of machine parts.
  • Bad piecing with long overlap
  • Too wide a setting between apron and front roller.
End breaks in Ring spinning
  • Damaged skewers and clogged bobbin holder
  • Jerky motion of ring rail
  • Vibration or eccentric spindle driving pulleys
  • Slack spindle tape
  • Worn gear wheel and deep meshing of gears
  • Choking and improper alignment of Pneumafil
  • Spindle out-of-centre with ring and lapper
  • Cracked and worn bobbins
  • Improper fit of bobbins
  • Incorrect bobbin diameter
  • Worn rings
  • Traveller clearer set closer
  • Too high a draft
  • Break draft not optimum
  • Loose and worn aprons
  • Incorrect shore hardness of top rollers
  • Insufficient pressure on top rollers
  • Incorrect apron nip opening and setting
  • Excessive twist in roving
  • Lack of control of temperature and humidity
High Yarn Hairiness
  • Mixing cottons with wide variation in Micronaire and maturity
  • Excessive short fiber content in the mixing
  • Use of excessive draft in spinning preparatory and ring frames
  • Higher spindle speed
  • Incorrect choice of traveller
  • Serrations or cut in lapper hook, ANBC rings etc.
Cork screw yarns
  • Aprons with cracked surfaces
  • Top roller slippage
  • Generation of static charges






Machine Data

Ring spinning machine G 38










/e3Z+RFd7HT63iYDXgt9jpr2lhp3b3mdyrJegz0rIb8NinEVUtgdR2R5sZhUhv42A18L0RD+7d3xIR6sy58PrMtLSKGP71vdyGdGgz4rFOEtF6W7KindiNc1l55MG7Bi0k5QV76C1SY7HaSHkd+BzmzHqJhkeamV2agCHVf9aheihA6vE1rPKG7ERle2hs60Wn9tE0Jeds9raJCd/92bmpody0xYM2kkK9mxBIS3DZdflnmtksIPdOz6kt6sxN23B6zKilFewZ+dHaOZGCflthAPZKRiFe7dSLSnKTltYj+/IYAc78n6VE7OxiDvXz7t3fJjzEfLbMOmnqSjdjby6NNfPIb+NqfE+9u7alBPVG+1oaZRTUrgH9exEbmje57YxOzXK+Eg/bocJt938W23f9OLFC+b0c0jrqpEoxJRXlyGSVWRNWvH1uawCsUyEWCZCJK9AJM9+Fkm/VU9agVguokhUyN7SPUjkYiqqy5EoxIgVIsQKERKFGIlcjFie9SeWi5DIxdk6ctHX5RvfKcS5azbqbVi23vq95WJEMgkimYSKdRPJJIjllf+iiWQSxIrssbxaxF//z79lT0k+0jo5lcpqJIoqxIoqJDVVVNZUf8dEVeUoaqVs2baJzXkfoaiVIakWUS2XIFVUIa6qoEompkomWT/+ZquUiqn6llVK/+XrNq7N3rsSubKakydPvLa/wx8bB/ftRz01g1Ku4OaNG2+6Oa+N3t5e3nnnHcrKyt50UwR+R3nlGdH+ni7+/m/+mu1btnD7Nb3p5j8qFy9dwB9w4/c58LlNGHWTVIkLUUjLcgtk/B4zE6M9OSHqcRrwe8y4HXrqlRLyNv+S6Yl+/B5zTgAWF2yjtGgHNrMqJzinxvvYkfcr2ltqcDv0+NwmfG4TTfXVbN30i5wQ3fBRUridwr1bsZlVOdE5MdrD9q3v0dokf0nMbviYmRzIDcFbTXMU5edRuHcrZsMMAa+FoM+KTj1OcUEejXXVeF1WAl4bbocBo36Swf5mpsb7sJm1xObDry3uB/Yt56YV+Nwmpsb7KCncTld7HR6ngZDfhtOmpaVRxq7tHzA7NZh7XqNuil3bP8hNfdgQe6NDnWzf+l4uax30WfG6jMirS9m57f2XhKjZMMPeXZuoFBW8JPSHB9rZ/OE/5XyE/DbcDj11NWJ25P0K1cxwLuYb/bwxfWKj7ybHetm+9T3aW2qyi9XWM7MNtVUU7NmOamacoM9JwOvA7TAzMznC+Eg/doset8PM9Ws/fNX8jZs3ENVUUFFTzt6KPRRKCiiSFJIv2kuBKJ8CcT4FonzyRXuzVrE3d14gyqdQXJA1Sdb2VuyhQJzPnvLd7CjeTqGkgJLqYoqrir62ynWrKqKkupjS6hJKpSWUyUopqS7+jpVJSymTZuuUSksok5bkvtu4rkxWRpmsnFJZOWWyiqzJKxDVSJDUVSFWViKqkVChEL9kohoJImW2vExekSv/rz/9b2wv2omoRkK5QpSrK1ZWfu2rZsNHViBX11SxdecWNm/fRHVNFZVyyRuxKkVl7ihTVnPylCBEfyhhf5DOphaa6+q5dfPHm7T5gz/4A9555x1+//d/Pze3WUDgm7xyISoRS/ij/+P/5v33PuTmTUGIvkouXrqAP+jG78vOSdRrJpBU5COvLsVmVuXEzNhwV05cbIhIl11HXY04J0R9bhN+jxmTfpqi/DxKCrdjNc3h95jxuU1MjvWybcu7tLfU4LLr8LqMeJwGGuuq2LrpF0yM9rzko7hgGwV7tmAxzuJ1GfF7zIyPdLNty7u0NMpyZR6ngYbaSjZ/+E9Mjffl7reR9SvYswWTfjonfNWzIxTu3UpDbVV2ONhjxWnTodeM09/byORYD1aT5rUL0UgwO73B4zQwMdpDccE2Ottqcdq0+D1mHFYNzQ1Sdm57n5nJgdzzGrST7Nr+QU4AbmRQRwY72LblXbo76vF7zAS8FjxOA7KqEnbk/Qr1NxaDGXVT7N7xIZKKfKymuZwgHupvY9MHP8/5CPqsuOw6ahUitm997yUhatJPU7BnC1XiwpwgDngtjA51krM2lxsAACAASURBVLf5lzkhGvRZ8TgN1Csl5O/extz0GAGvA7/HjstuYnpimPGRfmxmHXaLnmvXrnxv3O7eu82ps8c5c+4kp8+dZPXYCiPqYYZVgwzNDTCiHmJUk/38Q2xEPfRrbVQ9jLJDQf90LyPqYTpH2ukcfdk6RtroGGmjfbiVtqEW2oZaaOyt/44pO2pQtitespp2OfJWKfIWKdLmKqoaKxErxZTLKyiVllFcVUKBuJDiyhJKpWU5K5OVZwXrtz5vXCeqESOukfDTX/5PdpXuRqyUUKEQZcuVktznCoWIclnF+vUVSBQSqmur2bp7K1t2bkFaJ0WikLwRq6ypzB2ra6s5IQjRH8xyOkNXUys7t27j2tUf5zZogUCAd955J2cGg+FNN0ngd5BXLkQrJVL++D//Be+9u4nbt4Q5oq+SrBD14PNmtzvSayYQl+9FVlWCxTibEzOjQ51s2/Iubc2KnIh02rTUKkTkbf5lLmPndRkxaCcp3LuV4oJtWIyzufKJ0R62bvoFbc0K3A49XpcRl12Xy2aOj3TjdRnxuowYdVMU5eflhKjHacDnzm4Xlbf5lzQ3SHNlG5nZj97/RyZGe3IC12yYoXDv1lxGdKMdG/NdG2orcdqMeF1mHFYtWvUovd31jI90YzaoiEZe34b2B/YtEw7Y8DgNOG1axke6KS7YRkerEodVg8dpwGZW0VRfzY68XzE90Y/XZcTnNqHXTOSEqN2izgnU4YF28jb/ku6O+pygdzv0yKpKciJyQ6AatJPs3vFhLiO6IegH+1rZ9MHPc4vBAl5Lrp+3bXk3tzWU32PGqJsif/dmKkUFuOy6XPnIYAdbN/2Czrba3HQNl11LvbKS/N3bmJ0axe+x43PbcNqMTI4NMjLYg9WkxaRXcXX9ta+/jis3LrF8LE38QJjYgTCRlSD+tAdPwklkOYgv7caX9hDIeF+y4IKP0KL/JQsu+H5tvUDGS3gpQP9MD7awmfBS4Dv1Ahkv/rQHX8qNN+nCk3DijjvwJJzfMWfMjjNqe8kcURv2iAVryITJr8fo06F2qJk1zTGhm2J4bpT+qUG6x3ppH+6kdaCdxt5m6rsbUbbXIW+pQdosp7KhGnFtJeK6SsoUFRRLSymsKuavfvbXbC/ZSZm8ghJpKSXSMkpkZdmMq6KCMkVFNiOqzArUDeG3eccmPtr2IWK5GIlcEKJvG6sLiximVcyNT/Hg/v033ZzXws9//vOXhOif/umfvukmCfwO8sqFaENjJ3/2k78nb1sxt2/ffdXu/0Nz+fIlAiFvbmjeoJ1AIspHLs1mRAO+7BzM0aFO8rb8krYWRVYAeky4HNmM6LYt76KeHcnN19wQkSVF27Ga514amt+66Rd0tCpz4snt0NPSKGPblneZHOvF7zHjdRkxGaZzQ/NW81xuWHp8tIdtW97NDc1vCKh6pYRNH/ycybHebJbRZcBsnKEoP4/igm25KQIelyEnRLM7A5jwuS04bTp0mjF6uxsYHerEpJ97vUJ0/zKRoAOPU4/Tps2teO9sq8VuUeNxGrBb1LmM6IbQ3xCAe3dtWt8NQJ0rHxnsYNvWd3PD6ht9t5ER3Ria35hnumfXR1RJstnMjcz3UH8bmz/8J/p7mnPzdd0OPbU1382Img3Z+G5kRDeyreMj3eRt+SU9nQ257bWcNi2NdVXk7972naH5idEBhge6MRvUaFXTXLl86XvjdunaRcILXtxJO/Z5I/aoBVfSjiNuwxa14EzYcSbsuJJ2XEnH15bI1nHGbd855ixhx5Ww40458aZdtI02YwzocKecL9dbr+tJOfGkndnjt8+/Ze5vWa5++uvr/GkfgXQQfyrwHfMl/XjiXtwxD855F7aQA0vAislnRu82oHcbmLXMMaGfZGhumH/a/M/UddXTO9lHy0Aryo5aqhqrEdWKKa+poExRTrG0hMKqIgoqiyipKqNcWsGmnZvZtHMzlcoqxDWViBWSr61m3RQ/wGq+Zb+u7NeZQoJEWYm4JnusqqvmxGlBiP5QRvsH+Yv/5z/zq5/9nMuXvv/v6G3lypUrL4nQDTt06NCbbprA7xivXIhWSSr5yz/7c7Zu2iJkRF8xX5z/Ar/fg9/rJOAxY9ZPI5UUUyMrx74+d9DnMjEx0sOubR/Q0aLE5zIS8tnwuYw010vZmfc+OtU4AY8Fn8uESZ8VkWVFO3Fas8PMfreZmYkBdmx5j45WJQHP+hxGpyG3WGl6vJ+Ax0zQY8FqnKOkYDslBduxGefwu80EvVamxvrYmfc+bU2KbF1v1kdzvZSP3v/HrI/1BUA2k4qSwu2UFu7AblYTcJvxOAyopocp2ptHc4MUp92I12PFbtNhNEzT19vM8FAnOu0U8+HXtz3Iwf3L2ZXxNh0um5aJkR7KS3bR2VaLy6bDuy5E21tq2LPjQ+amhvC7zQQ8FiyGGYr25qGoLsVt0+F1ZjOlY0Nd7Nj6Hr2dDfjdZsJ+O16nEaWsnF3bP0C3vgVUyJ+dI5q/axOyymLcdj1BrxW/28TIQHZ4v7+nmaDXmo2vw0BjbRW7tn2AemZkvTw7B7e8aCfyqhJcNh1hv42w38bUWB97dnxEX1cTkYADn8uEy6alpVFOUf6OnBAN+hy47CbGhvsY6G3HatKgnpvk8m8QoleuX8afdONNObHM67HGzBhDBvxLXnwLHpxJO6GVAJ6MC3faSXDFj3/JizfjJrI/hHfBjW/RQ2jFjyftwpVyEFjyYY9ZMUeM2OPWrJhN2mkbb8EQ0OFM2L5jjoQNW8yCPW7FkbDlrnGsC9yXzfod26j/zaM74cQTd+HesNi6xV14Em68SQ++pAdf0vuNY9b8KR/epIfQQpBgJsCO0u3MWKYJLQbxxN04ow7MATMGrx6VbY5p8xSj2hEGZvvpneyjY7SLjuFOdpfvYfPeLVQ2VFMmL6dUVkapbD2bKi2jXC6iXCGmokaC6KX5ppLsfNXvWGVW0K5bhUJChVxMhVyc+16kWD9u1FNWZc+VlVQKQvS3orennz/5Tz/hr//L3/HFufNvujmvnOrq6l8rRIVFSwLf5pUL0dmRFnb+0x/TIM7jwX0hI/oquXHzBmazGavZgFk7w+z4AI2KSmoqy5ibGMJl0WHRzTLc207+9k201EqxaGewG9VYtLPUScXs2voBI73t2I1qHCYNupkxRMV7KC/YhX52HIt2BrN2hqHuVvJ3bKaxpgqrfg6bfg6zdoY6mZjdeR8y3NOGWTON3aBGNzNOyZ5tlObvQDUxhNOkxaqbZbCrhT15H1Evk2TrGtWYNdM0yCXsyfuQ4d527AYVNoMK1cQQ5QU7Kc3fwezYIFbdHBbdLFPDvZTl76SmugKtbhqDcQ6VeoLhkR46OpsYHetDp5smMv/6XvF58thRbPo5rOsxGO5tp6q8kMaaKozqKewGNUbVJLVSEUW78xjt78SomsSmn0M9NULR7jyqygsxqqew6udwmbUMdDazfdN7tDUosBvU2A0qjOopFJVl5G/bxNhAFw6jGqdJi2ZqhMJdW5GJSzCqJrP9YVDR3VrPri3v09Vci8uiy8ZXO0OtVETBjs3Mjg1g1WX7Tj83QXnBLmSiYnQzY9gMKlxmLcM9beTv2ExLnQz7eplVN0u9QkJp0S7GR3qxmtRYTWqMuhn6e1oZ7GvHalKh1/zmjOjlq5cJpn044hascSO2mBl/2kPbSDM1HVLccQd1PTWM6Yfpne4ir2QzlU0iqlsk7KzYhrJLTttIM9vLttI+2kL/bA/S1kpsETPuuANnzIYzZsOTdNI53obBp8WTdOKK2/+dzPFvusaXduOKO9hWuoUp8wSBBR+uuB1nLPudf8GLN+XCn/EQWPASXPQRWPDhTbmIroZpHWqitluBJWRixjLJmG6EvuluWoYaqetRUt0oRVRbRblCTKmsguLqMkqk5ZTJRZTJRZQrRJTXiBHXVFKpqM5ZlUJKpaIasawSkVSCSCpBLKvMmURWSVWNlOr1Lagksuz11UoZJ04J2zf9ULqHpvg///gf+O8/3cL58z++jOjo6Ci1tbU5e+edd6itraW1tfVNN03gd4xXLkQ76svZ/e5PEO36BbduXH/V7v/Dk0gkMBm0qKfHGexpp6W+huqKEoZ6O9HPTaGeGqO9qZaS/F1IRaVMDPejnhpjcqQfuaScgp15KKUSVFOjaNZ9lBbsprxoD73tzejmppibHKWxRkrBzjyqRaXMjg9j0s4xNTpAVXkx+Tu20lQrRz09hnp6nP7OViqK8ynYtY3+rjYM6pmsD6WUXXmbEJcWMDU6iEE1zfTYIOWFeyjeu5N6RTVzEyPo5qbobm2kJH8X5UV76WlvRjMzzvTYEE21csoL91BZUcLgYDfTs2NMTY9QWyejuaWWsfFBZmbH0OnVry3mly9fQjU5hnZ2kvGhPrrbGqmTVaKUihkb7EU7O8HkcD+SskKK9uyguU6BanIUo2aWnrYmCndvo2j3dvo7W9GrplFPjaGsFrNz60fIJOWop8aYnRhhdmIEcWkh+TvzaKqVY9TMYtbN0dfZQvGeHZQV7mF8sBeLToV2dpLmWjkFu/JQVFagnh7DqJ5hbLAXUUkBJXt30tnSgHZ2Eu3MBIPd7ZQX7qGiOJ/+rlZMmll0c1M01kjJ37EVRZWIscFebEYtc5MjVJYXU1q0h862BjRzE6hnJxgZ7KGhVsrk2CB6zQxDA918/tnZ74/bhhBNWLDEjTjiFuZXQjQN1PO//V//K/2zPfzVP/4lneNt1Pcq+e///FdIGivYXraV/+UPfx9xQznltSX87S//msb+Oka0g/zhn/zvTJnHCS76cEStuOL2NyhE/22WFaJ2tpVuYdI0RmjJjzflwhG14ku7c+eepBNvypV7NlvETGjJT8dYKx1jrURWggQXfQQXs8LVnciKdMd8dkqAyqZiWDVCz0QvzQMt1HXVo2iroaqxiopacXYRVFUZZVVllFeVU1FdQVll9lwsFyNRSKiQVlBeXY5IJkIkFWWPMtFLc0WFOaK/HX39k/zZT/6Rf/7FLi5d+nEuVvom77zzyuWGwI+EV/7LMKgmeP//+0vqpeXCKz5fA8lkkvHRYQZ7Ohgf6qertRFFlYiW+hoGezoY6G6nUSmjXl5FVUUJrQ3K9fIO6uRVyCsrkFdW0NZYy2BPB50tDZQV7kFcWki9oprejhYGutupV0ipLC/O+Rjobqe/ux2ZpJxqUSnVolJ62pvp72qjrbGOiuJ8qipKkFdW0NvRQl9nK0qpBElZEdWiUtoaaxnq7aS/u51aWRWSsiKUUgndbU30dbbSWCunrHAPkrIi6hXVDPd10d/VRqNShri0kBqphPo6OW0djfT2dVJXr6ChsYbevg6GR/pwumyvLeYPHz5gemyYod5OBns66GproqlWjlRcRmuDkq7WRno7ss+7EZ/O5noGuttprqtBVFJAZXkx9YpqRvq76e1oRV5ZgUxSjlRcRnOdgtGBHkYGeqhZ91FTLWagu52h3i6a6hSISwupFpXSVCtndKCHscFe6uRVVItKc+0Y6e9moLudyvISFFUi5JUV6z46aW+qo7K8GHllBa0NSsYGe9f7uRqZpIxaqYTWBiVDvZ0MdHcgFZehVFTS3FBDX3cbwwPddLU3o5CKGejrZHykH6W8klO/Yd/Iy1cvEdoQojEjrqQdb9LF+7vf5R8+/HumzOP85O//lCnzOOKGcn6165c4YzYGVX38zS/+G46olULpXraXbcU+b2F72Vb+4cO/xxw04M941rOHbzIj+uqE6LRlIvfZk3Ri9OvwJJ340m7Cy4HsQq9vPHNkJUjbSDPNgw0EFrwv+XUnHNlrU24CaS/BtI/Qgp/QYoBA2os75sQetmDw6tA61cyYphlTj9A33ktzTyM1LXIkSjFl0lJKq4spqcpambSUCrkIkUK8Pi90Y46oGIlSIswR/S0Z6u3jv/35n/PuP/78R72h/QaCEBX4Pl75L+PBg/u0Nis5cGDfq3YtAESjUSbGhhkf7mdleZHZiVHaGmtpqJGinZlAPTNJyO+lsVZOnbyKjpYG9Kpp0okYRr2G1oZalFIJw31dTAwPsJhO0d/dQZ28mjp5FTPjwxg0cywtpGlQylBKK2ltUKKZmSAc8GHSaWhSypBJyunvamNmYpilhQxD/d3U10iRV4qYHh1kdnIUn8dFvaIapbSS9uZ6NDMTBLxu7BYTDTVSFFUiBrrbmR4bwu20M9jTSaNShrxKxOhALzrVDAdWV2iqU9DaWEtDQw0TUyP4Ax6cThv1DQqammvRaGc4duz1TYB/8uQxJp0K1dQoOtUMy4sZOloaaKiR0tZYh3Z2knQ8itVooKlOgbyygv6uNqbHh0klonS3N9NUq6C5TsHs5CjauWk8Ljv1CimKajFdbU1oZydJRCPo1LO01NdQK6tkfKiP8aE+4vNhOlubaKlX0lAjZW5yFK/TRiQUQCmVUCuvoqe9Bc3MBIloBM3cNE21cuoVUgZ7Oxkf6ufIwQP0dbfT2qCkub6GualRrEYd4YCPhhopDTUyutua0M1NkYzNYzHqaWuqo72lnrHhPrRzk6TiMXq72ujpbGGwt5ORwV7Onv30e+P2TSFqjRtxxK244w7+y8/+X7YUfcSMdZI//x9/wox1koq6UnaU56H3athbuYufvv93mIMGimT55FftRutW8T/e+xt+9tFPmV8N4YzZsEXMP5qM6Ix1Em/KhTflwhYxI2msoERRSEH1HsqUxdT11DBpGss9b2QlSOtwE82DDQQXfbgTjpzlBHrCgSdhx5Ow407YcMdteJIOvCkn/rQLf8ZFIOMmvOAjvODDn3ThmrdhD5sx+/SobTOMqgfoGm2jpb+BmlYZZfIyyuTllMnKKJVu7KlaRoVChKS2UhCivwUG9Rh5v/qviIs/4PatH//ooSBEBb6PV/7LWFt7RGdvNwcPCyvjXgeHDh3i1KkTXL5wnnt376BVzSKrEjE80Mf9u3e4duUSV65cRiGtokpURioR5f7d29y+eZ3FTJqC3TuQVUk499mn3Lx+lbVHj9Cq5ygrymdooJd7d25x/eplbly/hqxagqS8BI/Tzr07t7hx7QqHDx0kf9d2qkTlnD55nPt3bvPwwX1Us9OISosY7O3m+pXLXL9yievXriGvllAtKicaCXH75nXu3LrB8tIie3dup6K0iFMnjnHz2hXu3bmNQauhtHAvvV0d3Lx+lcsXz3P3zm26OtqQiMowW4zcuXuLm7euc/r0ScorilHWytAb1Hg8rtcW8/v37mE3Gzl1/Cg3rl7h1s2bNNbVIKkoIeT38vD+Xe7fu8PxY0cpzt9NpaiMT86c4vqVS9y6cZ2+ni5KCveiU89x59YNbl67ysUL5ykrLkBSXsKB1WXu3rrJndu38HpcFOXvRl4t4fznn3H18kUerz1kaKCP0sK9aOZmuH/nNreuX+Psp59QlL8HcVkxB/etcv/ObR49uM9CJk15cQE1sioufnGOq5cvsvbwAeMjw5SXFDA7Nc6t61e5cfUKly5eoFoiQiqpYDGd4v7d29y7e4dMKklZUT5NdTWcO/sJt29e4/HaQ3TqOWqklYwPDzAzMcbHZ05/b9wuX71MKO3DHjdjiRlwJmyElwO0jTRTJMune7IDcUM5s7YpthZv4t0d/8ykaYzG/jqaBurRedRsKfqID/a8h8oxw4RxlLySzVhCRjxJJ46o9d8tI/pNkfc6M6LelAtLyJgTmZVNIopk+ZTXljAw14sn6cSdcBBa8tMy1EjLUCOhJT+epDNnG231pGy4U1ZcSSuuhAVnwowjbsIRN+FKWHAlLXhSNjxxK+6YFW/chi/hwJd0EEg5CWXcBNNufEkH7pgVe8iEwaVl1jzN8NwgXaMdtPQ1IW2qorqxkso6CScFIfqDmZ7o5qd/94d88P5fcP3aj2+O6LcRhKjA9/HKfxlPnjyhuauTQ0ePvWrXAkAsFuPIkcN8tf75wP59hMNBwqEgz58/B+DO7dvYbVZsNgsH9u/PXXvs6BEMei1ajZqb669fff78BYlEDJvVjMtp58W6j/v372M2G9Fp1SwtLeV8nDhxHKNBh0aj4sr6HpIvXrwgOh/BbDLg9bh4/iLr49bNm9htFkxGPfv3f50hP3LkMGrVLGr1HBcvXsz5iEXn0ajnsNssrK2tAfD48RpOh51AwMe+fas5H59//hkul5NMJo3H42J2duZVhvklrl+/Tl9fDxcufAHAgwcPmI+EcNht7Fv9uk3Hjx/DajGh0ahyq8nX1tbweT2YTQai81+/hvT8+fNo1Cr0Oi2nvrHAY3FxAZNBj8mo5/763oIvnj/H5/Ng0GuZ/8bG/RcvXkCtnsWg13H61Klc+dGjhzGbDOi06tyrA1+8eEEw4MdqMRP9ho/r169hMOhw2K2cPHE8V37s6BHsZjPhgJ9797JTbNYePSIVj5GKxUhG5xkZ6OfM6e8XopeuXCKU8ePJOLDEDDjiFlzrC3E2BKM/48kJsI1jYMGLP+PJlW2Ub9iGkHPGbDmR+O8lRDeE3qvwtSFE80o2M2Uezw29G/06WoebaBlqpLpFQkVdKZVNIgbmenPXRlaCNA820DrclMuIflOMepJOnEkLjqTpJXOmzN8xd9KCJ/H/s/de4W1dVx6vH+fl3oeZuTOZZCZtkjhucbdsy5Ysq1i9UL1LlMQOEARRCPbem9iL2EkQ/aCDFYWUZCWO47jGtmQ7cWJ1W8WS1fW7DyBgsMiWLTllwvV9/w/nbOyz9jp7Hx7+sfbeaxkmwe4zYvcZcYyYcIyYcI5a6TvgoC8Yn9WGc9SKcUBHr72LTlMrr7/7Gp+ePc2nZ05z+rO7j1OfneLE6ROcOHWc05+duuv6Q+3+9MxpTp4+cVfbOfXZKc6cP8enZ87Q2tXI1j3LiZFs4+M///EbvJH+MWWaiE7LreSOn4zz589z4sQJTp44yYkTJ/ngo49Q5WQx6PVy8tQpTp48xalTfpz+9LS/7NTJsc+vwslvUG+q+rcoPzlVnamu+fLzxMmTnDo9dn7SjxMnp7BvrPwb41Tg+ASffvppkFBOJcPDw7z22mtcu3YNgGvXrnHt2jWuX7/OjRs3uHnzJtevX+fq1atcv36Nq1evAn4icvXqVa5du8bly5eDbQSuv3nzJpcvXeLGjRtBXL9+nStXLge/v3Hjhv/aa9e49MUXXL9+fay9a0HdAbuuXr3KlSuXg7ZcuXw5aMelS5f8dUPsC1x79epVLl+6NE73lStXgvoD93f58mVu3LjBtWvXEAQTLS377vRRvqUcO3aM0pKi4DS0v2+vc/369eD93rx5kytXrnDj5o2gzdeuXQ3e640xm/3XX+GLL77g6pUrY318Jdg3169f58aY3oljdO3aNa5cvcKNGze5efNmsE9u3LgR1AE3g/YF+jPQZ4F+vHrlSnA8A3ovX740NkY3uXHjOteuXeXG2DN1Y+xeL1++zNWr/naOHz1Kc33dV+YWP3rsE5w+K7b9AsKIAcGjxzqBjAVI3e0cB87/FkRUGDZgGtIHPbB3QkanIqLN2gZcB+w4Rq0YBrQU1Pp3xCdkiIMe0YqWUsxu4zcioqYR7dfC7NVh8RrHweozYRsRJsHqM4VAwOIxYvYYcB6wYhvxnw//pp/hQwMMvXz3MPzrIQZfHsDzihudQ4PG3svwocG728ahQTyvuBk82M/AgT5cI05MA0YGD/bf1XZch4bpf8WH81AfZp8J32tu/vDhH275d/R/RaaJ6LTcSoJPxqVLl/B4PN9YQUdHBznZ2eTn5ZJXVEh6US6iNAXKnHTySgrJK8gjNz+XrLwcUrMzycrPJasgj+yvQ2G+HwV5ZOXful5WSP2sW5QH9ATPJ9aZ+F3IZ05hPhl5OaRmZZBdkEdmXm7QponXZ+Xnkp6b/fXIySYzL4fMvBwycnPIGDvOysmmoqKCU2NerKlkaGiIV155JUjgJkqAGIVKgIhMJTduTC4P1RG4LkBcvrzuxpTlAQkQoMntfVk38HWAVAWOQ+vevHkjaFPgq+vXv7Tv6tWr9Pb2fudEtLCwgHeD3r/x93Xz5s0p7/Xq1atTjlNo2cT7nSi36t+p2vPrmDyeofYF+nNie8FxHiOiE9u5dvVqCNmFE8ePs6+hgXfe/urNSgMHXJg8OgJrRCeSMrPbiDBs+FoESOfEa/8aRDTUg/tdElHnfhtmtxG1vYv8mhxSi1XEp8URrYxAnBpLRUtp8Nqh3/R/JRG1+swIPgMmn/5rYfZO7tupiK3VZ8LiNYyD1WfA6jNiHxWweA2YPTrso2Z/yKkpMlzdCWw+C+5XBmk3ttBq2Mfgr/vvchsO+g44cIxYcYz4M4D12runzP51JzAfNGN+xYLxgAmjz4jvdS9vvP/6Lf+O/q/INBGdlltJ8MkQBIGVK1d+YwWVlZUkJ6tITktBnpaMOE1OXFoi0gwZqVkqUtOUJKUqkajk7IqPQ5GW8g8FZXoqCUkKYqXxKNNTkacmB8unqi9LUd0W5GMIPU9JSyMrM5PjX5F3eHBwkIMHD3Lp0qVgWcATOtUxjCcz40nJl3VCrwt4I+FLQhmqI+BdDegLJauhXrzA8a1smuq6gGd3oh0Bb2iojoB9vb29NDU1Af5p9PfefY8Pjnxw2zhy+Ij/+IMPOHLkCEcOH+HDDz/k3T+8yyd/+YSjR4+Sk5PD4cOHJ/TfzXGY2NehRDS0TsCLOfFeJur96rG7OWV/TDXmof1/q7YDJPOrxiX0B8rRv3xCXVUN77w9Pm7km2++SWNDA+XlpfTqehjY70Tw6jGPGqckPIFYoLeDvxURDaYDDVl/eUf6vsIjGiC6xkFdcEOW1SsECXnAhoke0UCIpwBsIxYEnwmTzxgCE+ZRAct+cwgsWEct2EZsU8A6AWasI4YgbKMGzF4dhiE1tlEjxuFetP2dWEeMWMYyX90tmD1GDEM6XAfttAktgCU9ugAAIABJREFUdJhbcR6w3d02vCYEtwHBbfBn93Ib6LK2Y/bcxfvxmTD41Kg9bRhHDAg+O8O/8fHW4bf4vy7TRHRabiXBJ2PlypX8y7/8C2fOnPlGCurr6pHLZSiTlSSmyklIVxCrEiNNlaBQxaNIkiBTJSJWSNkWE0FCsvIuQ0FCsnzsc2pIUxS3uE6JNCVpXJkkeJ0SSbICaUoScXIpe8SxJKaqSEhRkpiqQp6mIiFF4Ueq4svjFAWSFDmSZDkSlZx4lWxKiFWJiJPGMHYsU8lJS0/l9dd/H5zGnSj9/f3s379/HBEN9Y6FkrdbeS2nIjmB6fiAjoBcGZvGDSUloVPBodcFppYDOqYioqGkdipSeqvrrl69OiWxunLlCq2trVRVVQGg02lJSUtBpkxEphiD8kskhpQljp1PhfjEeJJSlFTVVvGXv/yFzMxM3nrrrXH9dyuCOBUR/Soy+FX6Jo7XrY4D8nU/PqZq++bNm8Hn7at+WIR6RI8dPcre8grefnP8P9DXf/97Zj75FD/67/+irKKIX791EMFrQPDpMU/hEb0TfOdEdGyautfRSa+zC7PbcFc2LH0VEQ2EbAq9v8C6WLPbiNVnxjJGRPPHiKjrgB1h2OBf9uA2Yhmbvjd7/URU8Jow+UwYvUasB6w4DjlwHHJgf9mO7aANx0EH9gN+OA46cRx0Yj/gwDZqxzZqxzpqwzZix37Aiv2gCet+A46XBewHjVj3GzCP6BF8OoxuDbqhHgSfHmEso9XdgmVEQPAasY1aaLe00i60BssmIpA6NoBv1I5PwOwzYRkRMLn1tJlbMLkNd6RzUhv7dZhHdZjcAubhfjy/PsRb709PzU/LP6/cA/6px3/5l3/hnnvuob6+/hspqKurQyZPQJEsRa5KQJ4sRaaKR66SoEyWoFBJUKgSEEtjCI8OD2bq+HooJpUFMnt8WSZDqpIiVSWQkCQZgz/osixFhixlLPBySiKJyTISVXKkSXKkSTISlLIpdUpUMuKTEolPlhGrkCBWJRIrlxCREEu8Ska0LJ5YRQJxynjikuOIVcURq4olJimWGGUMMUkxxCbFEKeKQ5QiQpwiJj4tnvjUENziXJ4lJyM/nTfeep1zt4jB6nQ68Xg8tySiU3nKbkVKQutM9IgGJHSKPbTuVB60UHJ5K7IVWjeU8AS8bRM9ooHjK1euTKnv6tWrVFdXU1FRAYBRMJBZnIEyT05SroKkXAXKECSNg3zCuYKkPAWqPAWK7ERSi1RUt+zlL3/5CyqVit/97nfj+vt2SF8oEf26vvk6z+etjkPHK5RcTkWOQ9sOrRfquZ3qviYS0Y8//piioiLefHP8psT3//Ausx99knu//wMa66o5+PpBLCMWBO/dI6DfLREdI5peAxafFuuImh5HI932ZgyDPVg8RqxeM98uq9LURDQQ0H5iPNBA3dB7FTwmjB4jQ7/pp6Aqm+L6fLSDGgoa8qlpK6duXznVTSWUNhSicXVjHTFi9hqwjgiYPAYKG/NRFSvJqsokuzqL1MpUcmuzya5KJ7c6k7yaLIob8yluyKeksZCajgqq2supbCmltKmAirYiyluKyKpMoaQpH/uoGduIMOZJ1GMY0Nz16AIWjz9kVcBbXN5SSkNPbXBz18T+mrSk4BvYE/pMmd1Guq0dwfZD8a2fWY8Js8+I2WfE4hGweWz4fjvCW+9Pe0Sn5Z9X7gGoqKgI5oF9+umnv5GC2tra8UQ0CCmK5ERkY+diaQy7oncGM3J8PWRjWTsUJCbLkCgTghk9pCopCUp/NpDEZOkY4fQTUokinkSVFHmqLFiemCxFopQQL48nXiEhXhH49JdJFH4CK1VJkaikiJOlSFJlSFISkWUokabJiU+WklGcTVpRFmmFWaQWZpBRnkHO3mwK6wooay6lsrWCvW2VVHdUUd9TR7O2iTZjCy36fZPQIbTRae4Yh25zF0KfwLETx7hyZWqPqMFgoLm5+ZYe07stt1qL+NeWr7IjKSmJtLQ0AA4cOoBlyIzG2U1vAI4QTFUWgh5bJz22Tnod3egHNDi8Vo4fO8bmzZux2Wzf2Oa/l/77OplqHepX1XnzzTcRiUS88874qfl33n6XOU8v4Jc/foDa+kZ8vz2Iw+fA6RGwuP8RPKIBIqrH4uvF4lOjH2xDP9iO4O71r4v0Wr4TIjoVsZoIwWPC4B1PRDWDGio7KujQN9OtaaJd3UB5YxFqRye2ESMWr96/2WhUIDxxBzMWPsm8dfNYtm0ZS7YuZcX2ZazZuYINe9awLnwVmyLXsTV6Axt2hbFh12o27l7D5oh1rN8dxtpdYazavpzZy2ayO3FncFlAYK2vvv+7IaLCsAHbWJ8lFyopri+g76DjH46IWjxjXlXfGMH2WPD91stb7//fjzIzTUSn5VZyD8AjjzwSJKL33HMPH3300W0rqK2tJVEuRZEsQ6aSIVMljkGGPFkePBZJReyK2oU0JfG2kJAsRZYqQ54mR5oiRayMJ0GVQEKyFGmy1O/lTJUhUUmQqOJJUElIUEkQK0WIFHGIFaIgRIo4ElQS5GkykjKVpOalkFGQTm5pDsXVRVQ0lFPfXkdLzz7adG10mrrosahRW3sxDQh0Cd1UNFeic+oRBs2YhyyYhyzYfP51VPYRGzbfl58BWL2WW8LiMWN2C+PQt9/F0P7BcZ6nidLU1ER0dDR//vOf+fTTT4MRCU6dOsXp06f9EQxOnuT06dOcPHmSU6dOBcsC5YHvjh8/Hqxz8uTJYL3Qz2PHjgXrByMGnDgRvDZUz/Hjx4PXHj16dJyeEydOjLMpUDdUV+D4+PHj42w6deoUR48enXTt6dOn+eSTT9i5cydJSUncvHmT37/5ewYO9GEc0mEc/HYwDGgxDupw7rfheWWYY8ePMW/ePMrKysbZFLj/0D4OfHfq1Ck++cS/vjRg81TjMbG/A9+H6gnt66kQas+xY8cmjWegLNC/gfqhfR04DrQ9ld5jx45x8uRJPv30UxwOB2vXrg0uVwjIhx/8ieeeXsBPfvwgDS3tHHj9FWzDVvoGjdiG/xGIqGlsPZ8Bi1eLxdeL2avG7O31k1Ov8a6vEb0bRLReU4fa3EGPbh+Co5fG7ppJRNQ+amG7eCv3PX0vT8x7gueWPs8LK+bw/MLnmLdsDi+tnMf8ZS+yKGwBy9cvYenaRazatIywLStYtXk581bMZX7YSyxcu4THX3iC3Qm7g+88s9u/plL/HXlEA+PtGLWSVZ5OWXPx/y0i+t40EZ2Wf16557XXXhtHQu+55x4yMjJuW0FtbS1SRSLyZAUylXwcQstEUjHh0btJSEm8DUj9+Y+TE4KZOyTJCcQp4oiVxxIrjyNOISJOKSJWHku8SowyS0Fqfgqp+Slkl2VTWF1AeUMZtW01NHY10K5vRW3pQGvvwdSvwzJkwu4xY/dYcPosOH1WXCM2XCM2nKM2nKN2rB4Bx4gVrVNNfXcNVo+A1SNgHjIiDBoRhk2Y3QJ+74h5Ark0hUCYBGHYhDBsDIEJ14gT26CVIx8e4eixoxw9dpQTJ09w4sRxTpz0kwO5XM7ixYupr69HEASsVisWiwWdTofFYsFoNGIwGDAajeh0OkwmE2azGYPBgM1mQ6PRoNfrsVqtwbqB77VaLWazGb1ej06nC+owGAyYTCa0Wi0mkwmj0Uh3dzcmkwmLxUJPTw96vR6j0Uhvby86nQ61Wh0s02g0qNXq4LHJZEKj0QRtEQQheKzX64M2GY1Gurq6gvoCNqjVanp7ezEajbS2tvLSSy+xaNEiPv74Y15/8/c4fQ70/ZpvBa1LjdrehdalxuwxMniwj9EDozz+xBPExsaiVqvRarXBezIYDEGbA/dhMBgwGAz09vbS29uLyWQKnpvN5mAfBa4LjFOgfwI6tVotRqMRk8kUrB/op8BYq9VqBEEI9l1gzALjFwqtVjtJZ2DsA/oD11sslmC5IAio1Wo0Gg1GoxGLxUJ8fDwLFy5EMJm48PkFjh07xvHjxzh4YJQXn3+an/zov8gvyWb/G6OY3Sasg0as7rtPTL5bIqrH4tVgHYu16S/7+yOi2iEt9Zo68ioyiRZtp7K2gMaeGjSuLn9A+wARHTETo4zkyRef4Mm5T/KrmQ/z6KzHeezZx3hu9jM8P2cmi5YuIGzdSiJid5ORm0Z5dQl7G8qpad5Lblk+pQ21lDfXs2TDKuJUElwH+seIqHGMiPZi/Q6WYdh8ZkxDepz7bTT01I6LuzpNRP8xZJqITsut5J6kpKRJRPTHP/7xbSuoq6vzb/CYap1nyNrLOKmYndHhJKRI/Ugd+0zxE854lQRxUjwipRiRUoQ4SYRIGYNIGYs0NQFVjpL0wlRyyrIprilk774K6tprae5potPQgc6uxTxgwjwg4PDacfmcOL0OHB47NrcVm1vA5jZi9xixe0zYPSZsbuMYDFiHDdiGDZiH9ZiGdZg9BoRhHbYRAY2rm/qeKixeI4LHgHFI699Z6TFi8fhfwKYhPaYh/S1Dz0yEMKwfB9OwHofXRq9ZTXjUTjaHbyIyLoIYUTRRMZFIpPFoNL2UlpbS1dXFoUOHuHjxIhcuXOD8+fPB488//5wLFy4E8fnnn3Px4kU+//zz4Heh9c+fPz/uulA9n3/+OefOnQt+F3r92bNnx9ULPf7iiy84d+4c586dm6Q70N6FCxeCus+dOxfUd/78eT7//HPOnz8fvP7ChQucOXMmeG2ozadPnyYqKgqpVMqVy1d49bXf4hr59kTUOKhD19eL1qXGPmLB/etB/vinj1i9ejVdXV1BeyfaEYpA+dmzZzlz5sy47y5evMjZs2eDfRLQNXGMQj/PnTsX7LvQ8Qxt++LFi8GxCy2/dOlS0KZA24HjgL7PP/+cM2fOjLMh9F4uXrzIuXPngvdy4cIFjEYjbW1tVFfX0NDYwrbwnUTG7mTXzpVsCnuaJx78NzZvm4fzoA7zATMGnxnhLpOT746IhsbU9Icnsnj9f+dmjwGb7852zn8XRLROU0t2aSq7ojZRXpNPbede1M52rKNfElGbz4w8K5G5y1/kmbkz+d+Hfs7PH/o5P7/vF9x//3089NBDLFm6mK3bt5CankxbZwu9BjVdmg4MFi09Bi0tGh1NajUb9+wkNkmCzevE5rWFeETVWL131/MdGGurV6DvoIMOUyudQtuUY/1VRHQiyZwmon9dmSai03Iruae+vp6MjIxJuN3d8zW1tSQqZEiT5WO71+UkJMuQqGRIVIkkqGTIUpXEJ0nZEbOL+OR4RElxxCpiiVHEEKOIIS4pDkmKBHmWnOT8ZNKL0ylvKqGmvZJmTQM9lg70fRrMQ0YsbhM2j4DdZ8Hhs+Lw2XD4bNi9VmweC9ZhM5ZhYTyGxtanuXVfYliLxa3D6tGPKxfcWoxuDYYxWEeNdDvbqVFXYh4xYB4xYPRoMXn9ZPX2YJwE07BuEuxeC1qrhlXrV7Jg2XzWbFzN2o1rWL02jC1bN9PT0x30yh05cusc33dTbrV28OvWFN7ttZFf1d7u3btRqVQA/O73rzJwwPWtp+X1/Zrg1LxtxIz3t8OcOnWSZcuW0dXV9Y1t/iYxQP+W8k1t8vl8NDTUk5Agpax8LyvWhbFm81KWL3+aTWFP8tgD/8qKsGex71djGNWh9RoxeSeHa7qTf+jC2FT/XU3xOSnElBCCW9X5drYH0pSGxhG9HRJj8pkYOOSioCqbwro8tIMaantr6DS00N5dh8bYRl1XFWpnB5b9BgSvHvuoGdeojeQ8FQtXLeS5F5/jf+/7Ob986H5+ed8D3H/fgzxw3wOsW7eemOho8gvy0Bk12PttWPstuNxODA4LLVo97Xo9O0UxxKfKsftc2Hx/PSJqH7HQaW6jU2gbl2Xr62D1Cjj32zAN6XGMWqd89iYmURCGDXSa274DIup3aJiHjViGBTyvuHlzmohOyz+x3PGTUV1djTxJjjIziYSUROJVEuLH1nLGqySIFGLikySIlfFsj9lJYqYMRY6CtJJ0iuqKqOmooVXfRofQicahxThowuK2+KfH91txjFqwj/h3Zlq9pi89FWMZPb6c/g78czNNDY8Bs0f/tRA8egweHXq3Fr1bi3nURKejnWr1XoQRI8KIEYNHh+k2dH0VTMPaSbB7LWgsvaxct4J5S+ayct0K1m5YQ9iaVURE7uH06dOUlpYiFou5ePEiN2/e5LPPPhu3pvTmTX+Gn3Pnzk0K2RTwboWWXbt2jTNnzkxal3r58mXOnz8/add8wIs2MdD92bNng6GeAnUDHraJJCdgR+hu72vXrnHu3DkujWV3Cui+evUqZ8+e5fLly+N0X7hwgUuXLnHlyhW2bNlCQkICAK/+/tU7WiNqGNBidhvRutQ4D9gY/vUQx08c5/nnnw/GKg30zcRoBefPn+eLL74Yt5v90qVLnDlzZlw/Xrt2LehxnKpvQiMiBOp/9tln4+J43rx5c8r+vXnzJufOnQumSA1I6BiF7tj/4osvOH/+fDBOayAKwtmzZ7l48eK4CAaBewE4cOAAixYt4p233+HggQNs3LSBVetXsXDxXMJWvcTjT/yS7VEbcB2yYxoxYBzW+D2K/xBE1MiXy22sWNw2LJ6QDUp/T0S0NhfdsI56bR3tumZ6dPvo0e2jUV2Lpq8Ty2goEbWTXpjG6s1rmLPgRX5+77384t77efCBR3jw/od5+MFH2bBhE3KlgoKSAjQmDY5hB3a3nb7RPtp0naQV55NRks/a8M0oc1Nxjvb9VabmA0TUMWqlw9RKm3HfbRFRs9uIfcSCrq+XDqF13O77vyciOu0RnZZ/ZrnjJ6OmpgaJLJ64pDiiEiOIkkYgSopDmiYhKUdJZkkGZfUlVDaVk12eha5Ph3HQiMVjweq1+jf8jMHqtWL1WrF4zP6pcbcuCNOwdgpCN/W095S4Te+lyWPA4NGjd+vQu3WYRwU6HR1Uq6sQRkwIIyYMHj3GsSwi3xamYc0k3IqIrtuwlh3h27lw8QLl5eXExMRw+rQ/V7zRaOTs2bPjxuTjjz/G5XJNGiufz8d77703ruzq1atYrVYuX77MBx98QH9/P0ePHuXPf/4zTqdzko6BgQHenpBN58aNG2i1Wj799NNx5e+//z4DA/685ocOHWJgYIDLly/z61//mtdee22SbqvVyrFjx8aVnTt3DpPJNClKwIEDB3jttde4efMmO3bsIDw8nMuXL/Pq66/Sv//OPKLGQR0aZw+O/VYGX+7nj3/6I3PnziUnJweAo0ePYrfbJ9nvdrv5wx/GxwM8e/YsOp1uErl8/fXXGR0dDV7X39/PzZs38Xq9k7zdly9fxul0cuHChXHl77zzDgcPHpxkx+DgIH/605+4ePEiDoeDN954g0uXLmG328f9EAF444038Hq9k3T09/eHZJLyy2effYYgCIA/jNjy5ct55ZVX+N0rv2Hrpk0sC1vNwmVhbN4ewbY9Uciy0zF6bZh9JmxuDeYh3T8YEbVicdvHYBsjpn9/RFTv1lOrrqGxq5rO3kbaeuqp76qaQEQtuEYcZBVmsnTVUlaGrSIiMpqI3THERImJiRIRERHNjp3hJCikSJQJhIt2E6WIZo9sD5HKCLaJtrEpcgsbIraweP0SUopScYw6sHot3/lmpQARde630aJvolnbcNseUZvPTLe1g9KmoqBXdSobp4nodyvTRHRabiV3/GTU1taiTJWRWZZK7t5MKvaVsE/TQLelHeOAFptXwDlqxdCvoaKlFNcBJxavBdOQEdOwyf9y95oxe/wbeIxDBgyDOkxuLSa3ZhzMHu0E6L4ZGb2VtzQEJo8Jg9uIftiA3m3APGKh09FFdU8NwogZwWfG4DFi9JjGyPB3R0RXrVvJmvWr2bRlI+G7d/LZZ5+hVqtJTk7G5XLxzjvv0NXVxauvvsoHH3zAhx9+yAcffIDX66Wrq4t33nknWH7kyGG0Wi3Dw8McPnyYjz76iA8//JDXXnuNnp4e3nzzTQwGA42NjWg0GkZHR+nq6uLtt9/myJEjvP/++xw+fJienh4GBgZ49913g5mIfve739HS0sLLL7/M4cOH/dmJjhxhcHAQtVrN66+/TnZ2NgUFBXi9XiwWC1aLhffeey9Y/80336CjowOfz8eRI0c4fPgwH374IQcOHKC1tZW33nqLw4cPc3jMDqvFgsVi4eDBg8hkMnJycrh+/TpvvPW6f2r+W3pETcP64KYl5wEbB94Y5ZNPPiEqKorU1FRee+21YP++/fbb/PGPfwzeQ3d3N64+F4ePHOZPf/oTH3zwAfv376e1tZVXX32VDz/8kI8++oj33nsvuNnolVdeITs7m6ysLF5++WUMBgNDQ0PB+w/0b2CcA2N8+PBh+lwutFot77//frD83XffRa1Ws3//fkZGfFRXV1FVVcWrr75KT08Pv/nNb4Ljc/jwYRwOB1qthrfffivY5h/+8Ad0Oh0DAwNB3R999BEvv/wyTU1NvPnmm5SVlSGRSHjvvfd4+eUDbN62iaWrV7FsVRhbt+xk+/ZwElLkaIeNmPebMHt6/T8m3aa/XyIa2KTk8f9Q9hNQBxa30//psU6o83dCRId1NOjq6TK2ohc60Jk7aeqtQzPQNYmI5hTnsGnrJqKiY5GIZcTHJiKVKJAmyFGoVOyJjkKiTKCisZK04nQUhUqkeVJkhTLkBTKSi5JQ5MqIVkaQU5UVTH/6XYdvCjwrrgN2GtS11HfXBNfYfhWsXgHTkP7LjFNjz8e0R/SvL9NEdFpuJXf8ZJgEIz2GLmxeE3afgGu/lf6X7ThHzThGBJyjFhyjZvR9akoaChA8Aka3Cf2QAcOwEaPbFIRh2Ihh2Ih+SD+2DnM8jF7NpDKTV4/JMwavHtOYV3MyTJg8Zkxus/8zcOyeXGYYFtAPmdAPmzD7bHTZe6jurkPwWRG8FgxuAZNHmEBE9bc4n7rMPx2vGfdp81rotfSycv0YEV2/ktUbVrNm/Rp2R+ziszNnOHToEHW1dUgSEoiIiCQlJYWoqChUKhW5uXmoVCokEgnJySnExsaSnp5BdnY2YnE8KpWKxEQZYnE8ubl5pKWlER0dQ1paGhEREcjlcqqrq4mKiiIqKork5GTi4uJIS0sjJSUFkUhEUlISIpEYSUICGRmZJCUlERMTQ3JyCpGRUSgUCtLS0pFKpUgkEhQKBeG7dpGVlUVRURHh4eHI5XIkEglSqZTc3Fyys7OJiYklJSUlaHtOTi5JSUnBe4yPjyc1PY3M7CwSpFISZTLixGK2bN1KdXU1giDwySefIFgF+kb9HlHTgB7TgB7j4JeYWDapzoAOw4Au+A+1S+jAYrfQ1tZGTk5u0PuakpJKTEwsWVnZ5OTkEhcnQi6XIxKJkMRLyM/z929MdAwqlYrY2FhUKhU52dnEi+ORyWRIpYls3bqN4uIS8vLy2b59B0plEnFxcSQmJpKXl09ycjIRERGkpKQQJxKhUqnIzs5GJBIjlUr9bcTEkJOTQ3p6OjExsSiVSsTx8YhEImrr6lAqlYSH7yI1NY34+ASSk1PJyMhEJpMjlSYilyuIiIgkIyOL7OwcoqKiUalSkEoTkUoTyc3NIyvLP0ZJSUls3boVpVJJXV09H3/8Z0YOjLJh50ZWbVjFsuULWTJvNjNn/Apx4h76fuPEcNCAflTnz3rz9+wRDZJMUwgRdU4gosJ3SETthK5HDZB2v23CWEafECJanU1hXT66QS116ho01k56dPsw2Xqo76yit78Ly34jgteAfdSCc8ROTlE2e2IiSMvIIDoqjqiIWOLixIjiJYgS4hHLJcgyFHRbetD0aehydtHp6qSjr4MOZyvdtn20GhsobswjtzoDi9eAbcSfgvO79ohaPCb6Djqo766hrqv6toh7KOkMEGbHqHVKb+r0GtHvVqaJ6LTcSu74ybAPWtH3aeg7YKe6o5KkfDmS9Dgae+twjFqCqec0zh5KGgv9f4hjL2LTGL5qOl3wGIJZO4Qpp9O1mL0aPzyaCaTPMMFj+vUeUWHYiGnYiOA2YRjSY/GZUTt6qO6qQnCbENwmjMMGhOHAxqMJbUxqc6o6RkzDekxDOv9u+2EdpiEdDp+NHouaFZtW8uLSuSzfsILVm9YQtn4123dt58LFi+j0OsJ37cJmt2Ox2iktrUSnN9I/MIjd7mBwaJiuLjV1dY1YrHYGB4cZGBjC6XRRX99IS0s7fX392B1O+vsHMJkEyssrsVqs1NbVsXHTFjo7u+hRq6msrMJssTA4NExfXz82m529VdU0NDbT1z9AX18/rr5+zGYLhYUlaDQ6+vsHcTpd2B1OOjo6KS0rx+lyIRLHExsnoq+vn+qaOurqG7Ba7TicLlyuPgxGgZKScrp71PT1DWA2W7Dbnah7tRQVlaI3GOgfHGRgeBhHXx+V1TVU19djMltYvWYdpWVlvP32OxSWluDwOhEGjJj6jRj7DBhcekz9RoQBI0K/H6YBP4LnQRiC11ndZmrba0jLSWP37iiUymQGBoZoaW2nvHwvVpud/v4B+geGcLr6KC+roK21naGBIZwOJw6bHXW3mtKiUgSTwGD/IH2uPlxOF/UNTVTX1GG12dixczcKhYr+/kHKK6pobetgYHAQl6ufvv4BjEYTZeUV6PR6+gcGcDic9A8M0LyvhabmFuwOBy5XP06nC4ezj7KKvah7Neh0etas3UBVdS2CYKG0tBKjyUx//zAu1wAu1wD79nVQU9OEyzXIwMAwfX2DuFwDlFdU09zcysDAEH39g/T1DdDT00txSRk2m4PsnHzWrtvIn/70Mb/5za/ZvHUD6zasZsmyl3jhxZn86rF7iVNEM/zKEIJPwDQiINxG/vhvA/uIheKGAnod3ZNywX/7dr4MyTYed06mAvbZR/zvx21xm2nqbaBvtA+r24rNa8fqtSK4BQSvgODzw+QzoffoMflMuF52UFCbS1F9PoYBDS26RsobClnRsk/AAAAgAElEQVSyai4ZeUrKavPROLuwj5qD7dq8ZjJK0tiTsIvUghSiZVGIkuKIkcYglscjVsYjVsWTmJlIq7GZbmcnnc5W2l0ttLua6bA30mVrpF2opbQ5h4K6dIxDPfTY96Ef6MI0rMY41I3Vd+dEfaq+M7uN9B10UNddTV1X9W15REP7O6AnsLP+dolooP8CNtwp0Z7eNT8t0zJe7vjJMPcL9Dg6sfnM7G0rR5knQ5oZT5OmPviitXoFNM4eSpuKgn/QoeGObn9qfSqyqh0LOK0eI6KBKfypiOjXIzTkknFQh9Ur0OvopqZzb7DO3bA7cP8BGId0uPY70Tp0LN2wnHkrFhC2ZQ1hm9eydtM69kTv4eixYwwND9Pa3obJZKayYi+lpRUUFhbT3t7BlctXqNpbRVlZBSXFZaSmpnPo0K858sEHpKSkUVhYQllpOfn5hVy8cBGrxUZhQRHl5ZU07mtGnqyksqaawpJicgrzKSorJS0rA8+Ij/cOv09SSjLpGZlUV9dSVVXDmTNncDicFBYWUZBfTG1NHR0dnVy4eJF9zfvIyc6isrKSoqJCMrMyqaysoKiwkMqKCvLz8yjIL+DkyZP09w+QnZVDfl4RWVk5VFfVcPnyZdra2ikuKaW8rJKUlDRMgsCJEyfIzMokJSON6poacnJzEEsk/OHdP/DBBx+QnZ9L34gTYdCAacCAoV+P3qXDNGAIlpkGDJgGxzB2Hqzfp8MyLGDs12HzWKhoLqOwrICWlnacDhdNjc2UlVVQVFhCSkoqhw4d4u233iE3N5+amjpKyssoLi/l9KefotFpKSguIicvl8ycLPRGPUePHSOvIJ/8/EJKSyooyC+kIL+YivK9VJRXUlxUSmlJOYWFRVy8eBG1VkNuUT5FZSWkZWXQq9Vw8dIlCkqKyM7PI7+4kLSsDD748EPeeONNsrNyKCkpp7m5heTkVEqKyygtKaOoqISSojKyc3Jp6+zk0zOfkV9UTEZOHntr68nOz+f1N97gjbfeorCklOKycmpq66mtruP48eNoNFqyM3PIzyukam81SqWKvXuruXDhIj6Ph23bNrJufRjLVy7hmdlP878P/pQdsTsZeHkAq8+CYcg45Y/Ou01EQwnD3W7n2xKowDsllOQEjo2DOraLtrBP24RrtA9Tvxmr24bNa8c0bMbkETB4jOjdegxeI6YRv1fUfsBGcnESqcUqDP0amnrq6DK2UFKdy76uGirqC+m1d2MfsYwjUFmV6eyM30Z0UgSRit3EJkcRpxIRnyxFrIonPkVEUp6CNtM+ul0ddLna6HQ109HXRKezkW57Ex2WespbcylsSEc/2EG3vQndQBvG4S70gx3+RADfMRGt7aq6bSJ6u/ibEtHpzErT8k8sd4WI9jq66TvooKKlFGlmPDFJkTT21k0T0W9ARE1DOqweCz0WNUvXL2fBypdYsXEVy9etJGzDGrbv2kFJRTk5+XlkZWayavkK1qwMo21fC+KYOJa8tIiyohLmz5lLkkxBY109C+ctIHJ3BEq5gpfmzWdvWQV5WbnMeX42BTl5rFkZxo4t2+jp6GLblo0sWfwSKqWM2c8/i0opo621mQXzXmTHti0kJoiZ/fyzVJaXkZ+dywvPzyYvK4cNa9ayYc06ejq6iI2KYeH8BRTlFzBvzgtIJSJamupZMHcOO7ZuIi46kjmznqOsuICKkiLmzHqO9ORkNq5bx8Y16+lobWPX9h0snL+AsuISFs5fwJ6du+hsbWf1ilWsCVtBarKS2bNmkpWVRkFBLrNmz0QsicVg0vPhhx9SXl2Gc8SGcUiPYVCHfkCLrl+DYVD3tTAO6TAMaul19aBx9dD3soOihjya25twDwyRnZ7JC8/NQiaR+vt37nx27whHEidm3gsvUlNVRW5+Fi+8OIvsnEwWLXmJ8N3baWlrZmXYctasCyMtPZmZzz1DWnIKjbX1zJ8zl9jIaHbvCGfBi/Oor64lJz2LubNfpCgvn2VLFxG+cyv7murZunkDK5YtJj83mxdmzSRZpaCutorFC+cjlcQjjo1j2aIldLa2kRifwNzZc0iSKVi6aDHh23ag7uxhy6ZNLFwwj9ysTGY/P5PUZCWN9bUsmP8i4rhopBIxixcuoLaqkrysHObOmkNBbh6LFixk68bNdLS0sWXjJhYvWEhhbj61VdVkZ2WyZcsG1qxbyZLlC3lm9gx++IsfsGLzCqwef8Yxk0f4qxFRw4AWw4A2+Df6tyKhoe+6wHswYJ+urze4aWa7aAsN6nr69vdj9zixDFsxD5uxem0IHgHBa/J7RUcEzKMmTB4jlhEzotRYxKmx6Pt6aeiuwTSgxTJkQGPppLatYhIRNbuNVLVXUNpURH1PDU2aeuq6q2noaaSxu5mG7kbquupo1jag7e+l29lBt6uNblcLXX376HLto8exjy5rI7XdJZQ0Z6Ptb0fjakU/0IFhsAvdQAdmzzQR/cZEdNojOi3/xHKXiGgXNp+Z6o5KUoqSkGUnTHtEvwURtXksaOxaNkVsYfXWNWyN3M6euEh2Re1mZ0Q48YlSomJi2LNrF8myRGRiMZrODhQSCakKOcmyRBQSCQWZmWg6O0mIjSEjKYlUuRyZWExbYyOVxcUkiuJQSaWkyGXIxGK0nR2kxItIFcUh3r4NRWQEBUlJaJsaSYqJJkeWSEGSkqSYaNob6ikrKEAcFYVSIiFZJkMmFtHT1oZMLEYpkZAkTSBJGk9RbgZtTbWIo3cjitpNfEwECXFR1FaWUFqQjTh6D8myBJKkCSTExqLp7CQ5MZE0pQKZSOS3M1FKT1srKYkJZCfJSZdLUUriqKksoSg/i/DwrYTv2Ua8NJbf/u4VLH1mHPutGIa16Ie06AY1aAd60Q9pvx7DWrSDvfT29aAf1mIeMdHbp+bQbw5SVVZG3J4IRJGRKBMkdDQ3IY+PJ1mWSFZKCgmxsbQ3NVCWl01CdARJEhFKSRzS2EiM6k5S5QlkJMnJSJIhF8VQWVJEU3U10bvCiYuIICE2BnFUFOr2dvIzM5DGxZGhVJIulZASF4NDrSY9XkyaWEyWNAHZnj00FBeia25CGR1JplJOqkKBTCyis7mZgqxMEkUiInbsQBwVRaJIhKGnB5VETH6SnEyJmJS4aGrysumoqkAZHUGOPIE8pQzprh2omxooyMwgVSFHlZhIqkJBZnLy2HMVS5JUStTOnSRJpSSI44iJjWRPxE527dnBui1rmLf0RfZIduMadeI66MTs8++s/q6JqDBsoNfRja6vNxiK629JRAOEJrAm1DSkR+PsQdfXG3zf7BBvZZ+2iaGDQ/SN9OP0ObEMW7C4LbgOuug75ML5shPLqBmj14DRbcA6akGUGosoJQatS02LrhGz24AwpEdj76JF24jG2TOJiNZ1V9Nm3BdM2qDr12DoN6B3GTANmND1aVHbu+h1dtPj7KLH1UF3Xxvdfa30OFvpsbfSY2uh1VhPVUcxhsFuTEPqsWn5HvQDXVh8+u+E0E8T0X9smSai03IrueMnwzIgoLZ34Ri1UtpUhDg1lkj5bhrUtThGrdNE9BsQUYfPhtahI0oWw574CLJLcympLiMxSYZMJSdRqSA5LZXsjAz2bN7E1rWraW+oY9u6Nezesgm5KJZt69aQJBHTUlvNxlUriI/YjSQqgg0rl1NfUUaGUs76FctQiOOICd/B5jVhtNXVELVpI3FbNpAujmXL0kXIdofTvrecTUsWkrhrJ6qYCLYuX0pdaQlp8kTWLF2MNCaKiG1b2LImjNa6GqJ3bmf3lk0o40WsW74EmSiKusoiwpbMRxSxg+REEauXLqCqJI80hYT1KxcjF0UTtzucDSuX01ZXS9zucLatW0NCdCSbV68iasc26spL2RK2CtGObSSLYti8cikluekU5KSyfPlLiCSRKFQJSJXx7G2uwDZqRufuRTfci3ZIjWawB91w721B3d+FdkiN3q3B4NHSaKhDmZpImiyRJImYDSuXI4mKoKmqko2rVhATvgNpdCRrly2hPC+HDFkCaxfNJ27nVmK2bWLXhtV0N9YQvn41Mds3kySKZtPKpWQmKSjOzmTtsiVIoiJQiONYu2wJ9RVlKONFbF4TRnJCPHHbtxK1YS3dNVVErFtD7JaNyCN2sXPVcgqUchqK8ti8ZBHi8J0kxkazfsUyastKkIti2bImjJTEBCK3b2XT6lW01FYTt3MH0Zs2kBwbzdblSyhSKanLz2XL0sUkhG9HHrGbbcuXUV9USJoska1rV6MQxxGxbQu7t2yiqaqSrWtXs3XtanJSVKQp5UglYpRJMtIzkqmqrSQ1O5k9ol3IMmTYvTasPqt/c99fiYj22DrROHuCRPS7yn1+u7YFSI3NZ0bX10unuS1oq9ltZGf8Ntr0LehtOpJzUynYW4Cxz4hl2EJ1+15KGgspay2lzdyKddSMyWPEut+KPE+GIkeKxtlDTedeWg3NqO1dtOibqNhXgtreNY6ICsMGWg3NtJta/GTT0U2vo5seWze9Dg0apwaNsxetU43a2Y3a1YW6rxN1XzvqvnZ6XR302NtQO9rpdXbQqKlGcGuD+ewFtxbjUK//fJqIfjMiOj01Py3/xHLnu+ZdRjSunknZKkJJlsVjotfRTXFDQXCReDBczpD+jgid4NZgHemlw9KAtq8Dq0+H4O6dRESFYcMk8nfr9Jtf1rX5zPTYOqckopPJ5NT3MlW9qYio3WdDbe1lw+5NbNq9mVi5CEV6EtHiWKJE0RSUFFNZvZeW5iaSJGJSEiXYDVqyVUpSZVLqyktJiIqgsjAPQ3cnksg9FKSnUpKTiThiN7rOduoryoiP3EN9RRmpMinp8kQErZq0FDlJcjFNDXuJiwmnKD8DbW87ElEE2ZkqsjKUxETupHNfI/uq9yKJ3ENtmZ+UpsqkWHUairMzSYiKoLa0GGlMJBWF2ei69iGJ3kVZXgaVRTmII3eibmukYW8J4sid1JQUkqVSkpwQj12vJTdVhUIUS31FGdKYKPLSUjBr1CjjYsmVJ7I3JwNp5C6aqkppbaomKmoHVdXF1DXu5ciRw7gPDOE6aEM/7Pdw6oc0QU+nbrAX7Rh0E86D5UMa9EMaNP1qLKMCrgN2jp84jrvPRXNVJeKI3VQW5tHT0owkag+FGWnkp6UQH7mHrn2NVJUXIY7ZRVlRNgppDBkpMgyaDlRyMSp5PKWFWYgiw9lXU0VHYz2iPbuoKSmiLC8HaUwkus42akqLkMVGU1deilwqIjU5EcGoJkkuRiETUVGWR2z0Tqr3FtPT2UxcdDiF2ekUZKQjjYlCUHdTU1qENCaKxspyMpQyslVKrLpe0pLkJMmlFBfkIYqNomZvOd3trcRG7aEoP4fcrHTEcdFoezr9z0rEbqpLClGIY0lXyBB6e0iVJZChkNHV3EBdZRlpyUnExUWRKJeQlpGMRBHP5t0biUuKw+qxYhoyIHjNmD1Tr9+8XXJ6q7pWr0BxQ0GQeIWm2p1IIv7amGi7MGwIvvcC78Lt4i206vbRrmljSdhixIo41KYunD4HklQxe6ThxKXEUN5Sgm3En3qy72UHOVWZZO3NwDpiptPWQbu5lU5rB+2WNtrMrcEf0qF9GEjaELDBOKj1L00Z9kctMQ4bMLmNGIf1GIa0GIY0GIZ6MQypMQ73Iri1CG5/6DzjUC8Wrw6rzx8ZRHBr0Q/0YLsLcVZvRRL7Djqo7aqipnPvXSeigXEKtGd2G+mytI8jn3fjB9TEXfPeV9y8+d4bd+P/+d+1TBPRabmV3PGTIfQZUNv9U/Ohv/4Dv8QDf7y9jm5KGguDITTuGhH1aDC5u+iw1KN2tCK4e8delP9oRFSP3Wej29zDjLnPcN/j9/PUC0/z5PMzeO7FWTw/Zxa7oyKRJEqRSiRsXbeOpx99hPUrV/DSnBeY9/xzJCVImPf8c8x59hk2rQ5jxiMPs2HVSuKjInnyVw+xctFCwpYs5ulHHyEhJpr1K1cw45GHWbdqBS/Mncmc+c+zJ3onz70wgxkzHyds3TIefuIBwtYvJ1q0h4cevY9F819k9ZIlzHzicSTRUWxes5rHHrifDatWsmTeXF6cOZOkhHgWz5vDnJlPsXPzOmY8+iBhS18ietc2np/xGEsXzGHtisXMePRBxJG72bZ+HTMeeZit69Yy7/nnWPTiHJSSeBbPfZEZjzzM5jWrmfXkE6xZ9BLymEieeuh+5s+eybrVy3jqqYfZuHk1ldVlXL9+jdf/8HtGf+/FPuKPb2j3WXDut2EfsWL3WbD7rH6MxRUMnvvG4gyOWLD5LLj22xn8dR/eV9wA9DnsKCXxvDR7FrOfnsGGVSt59P772LBqJQkx0Tz96COsWPwSSxbP49FH7ycuZjerVi5ixlMPs2H9KmY8+TAL5s9Clihi1nMzWDT3heAYbV6zhu0b1jPjkYdZvXQJqxYv5pnHHkUaF8P6Dat49KmHWLtxFbNefIb5i14gQR7HzNkzeGHec6xev5zHZzxMVEQ40eE7eeS+X7J2+TJWLV7EM489SnR4OMtfWsDTjz7CxtVhzHjiCV6cNx9JYiJPPv00zz73POs3buLxp55i/cZNxIrEPPzo4yxbtoywpUt46uFfIY2LZcOqlTz7+ONs37Ce2U/PYP6s55HGxpCmVLBh7RpmzXqWWS88y9PPPsnTs57ivsfuZfW2MGxeG1avBcuI9TsjojafmbLmYnpsneN2Q3+b90nAGxaKryLAX4ep7AjYFyBSO8RbadU206FpY9P2DaTnp6Ix9+DyOkjOSyJOFYUkLY7yfSVYfX59/S87ya/NIbsmG8dBO+YRAfOIGfOIgDBqxjJqxvwVnrsv7fHnrzd5x+AxjmEsUolbjzCsQxjWYXbrsfqMWHxGLD6D/9jr/zR79Ahu3ViKz2ki+k2IqGeaiE7LP7ncORF1Gel1+jcJCMMGXAfsweNQIqpx9lDWXBw8DyVy35qIevxEVDfQRq+rlV5nG4bB7inDN/39E1EdFreZXpuGx2c/yQ9/+SMeePJBfvXUIzz85KM88uSj7ImOIjI6iqjISHZu2cr/fO/7zH/hRRbMmcuPvv8DovdEMP+FOfzP977PqqXLuO9nv+Dxhx5GEhvH/T//BY8++BBhy5bzi5/8lDUrVrJxzTr+89/+nflz5vDS/Dk8+MAvWLliCbNmPcP3vvdvLF+2kAce+AUP/+p+xOJofvrTH/KL//0Ja1eG8dMf/oilLy1k64ZN/OA/vsdLL87jpbnz+PlPfkrUrj0sWTCPH37/P1i2aAHPPPkYM2c8wbrVK3j4/nv51QP3sn71Cn783//FskULg/cyd9Zs5s1+gR/8x/fYsWUrKxYv4V//n/+XZQsX89xTM3j4gXuJi9rNg7/8OT/+n/9iddhynnzqUZYsW0h17V4Ahn1D1LbWUFJbTElNMSW1xZTWlVBcU0Rx9degpoiCyjzK60spqiqgsrmCdk0bN2/eYG95BbJ4CbOeeZb//s/vsXzRYn75vz/j6cefID4mlnt/+jMeuf9+1q1cxv/8x7+zYtECtqxbww/+/V9ZPG8OM598jHt//D9IoiOZ/cwMfvSD77Nq2XKeePgRZj07k/Vha/jFT37KU48+zrpVYfz4B//D5nXr2bBuNd///v/H/HmzeW7mDH70w+8THb2b2bOf5cc/+gFhq5bx4AP3MnPGk8RGRPKjH/w3jzz4ECuXLOXJRx5j5dJlrFq2jP/8139j7uwXmP3cbH72k3uJi47n6Sdn8t//9SNWLlvNvT+7nycfe5qYKBE/+eHPeOxXj///7L3Xc1znteh57sw/MC8zdeveWzXnYV7OsawsWZaDZFuJCakDAglmEAyIDaAjUiODIHIGOuecu5HRyEQiqUCJVLJk2fK1ki1LjrKk3zyADYMSKYMi5ePjg1W1qnfv3vHbe3/71+tbAXFaGv/6P/8XguQUDmXt53/+P/+dJx57nB/94Ac8dO/9ZAhEVJdXIBYJuP+Bu3ngwXu4+95vcdf93+J//X//g+SsZEYWRgjNBPHPBG6YvulOgGhoxk9DTy0Dtl7MQcNGLfKvqQaf9kt6o+WMft0Nl/2iGv26G66v92o2NTNXjN6lwWjTknUwA5VajitoIzTup6xawmlpDsUVeXTqWgnPbQDR2FKM+p4aarrVRJbCeGe8eGe8eGa8uGe9eGa9+G9QavNGsOyb8eG5tv71IOohMO0hMOUhmOjPZ76sodmNEsr+afc3VuLznxtE41x57aXbfpn/o8sOiO7IzeSOgKhzxMbY+Rh9lm7kDWV06FpxjtiuS1tiCuhp6qvf/J54qG/XIhqIO/FMGvFMmnGPm/FOWgnO/OcE0dB0EEvAygOPPcT/+2//yr89+C2+/dA93PvQfTz4yEM8vWc3onQxYnE6jz/2I+67935279rD4z/8Ed/+1j2kJKXy6He/x4P3P0TS3hQevP8hHn7wEZL3pXDfPffzg+/9kH17krnn2/fy5E+e4smfPMVd//5tdj29mx8++iiPPvAgwqQkHr73Pu6/6y7S9u7lkfsf4HsPPUzq7j08fO99PP7Y4zzx4ye47577eeLHT7Hrmd3ce/d9PPP0Lp564mnuvec+kvYm8/hjj3HfvXez+5lnuPfub/PkT35CctJe7vr3f+cH3/8ee/fs5u677uKZp59h9zN7uPee+3n6yV386LEfc/dd97BvTxI//MHjfPtbd7N39z4e/e73uO/B+0hNS+Ge++/lge88yN6kvTz8yMM8+fSTlEpLee3111HXqHn8icf4zvcf5r6H7+WhRx/kBz/+Pj/48ff5/o++ty2958G7+e4PH+GxJ37I0dyjXL58mYqKKgSpIh584GEeuP9Bdj+zh/vuuY/vPvIoyftS+Pa37ub7j3yP5F3P8OC37+apxx9n90+e4Dv33kfS08/w2COP8L0HHyI9OYXvP/wI33noEXY/s4cH7nuQ5H0pPPXE09x91z385EdPsOvp3dx91z3semoXTz7+Ix789t3se+ppHn/0ezxw17cRp6Tw+KPf47sPPEDqnj1898EHefSR75K0L5n77rmfH/7gcZ55ahcP3v8QqSkCfviDx7n7rnvZs2sv33/k+9z/rftIfiaJ7z34KI/c9x1Sd6fwyH2P8Nh3f4g4ScS9/3YPTzz2BLt37eHeu+/nqSef4eknn+Heu+9j7+59PPLwd3nogYdJ3pdCpjiTp596kvvu+/YGjD50L/9+77/x3//1/2aPeDfR2Qjh2RC++DcDoomckC2DTRh82s0yrV9XExH3W/VWlt3uuq5RO94JF65ROwfz9mP06LC7zRzLPYy8sgx30EZ0OkT12Qok5XnIaiX0GDuIzQcJxX2MLUU3QTS8FMY758c758cz/1e9GYh+MTm7b9aLe9azEQg149kCoV6C1zQ05SV0k2uTgLZvsrLSPzOITi1PMjU/yRtvvnEHXun/uLIDojtyM7kDQ/NerBETEyuj1HWpSTm4j+q2CsxBw2blkNCMny5DO8om2XUP8Z0C0eCsA/+0bWN6xnXDYKV/fBB1E5oOYA1aSd6fyj7xPtIPZ5BxKIv9h7PJOrSfZEEae/btZV9yMknJAoTCDNLSxCQlCxAIM0hOFpCaKiI1TURSsgCRKIs0QfrmfJEog+RkISkpQtIE6ezbl4ZQmEFKioC0NAGCNAFJe5MRCkQI00SkJKWSlipEJBCTvC+FlORUhKIMklOECITppAnE7NuXSkqqaPNYROKsa7+LSc/IJDVNwL6kJFLTBCQlp5CSmoZAKLr2KSYtTUhKigChKAOhMJ2UFBFicRbJyQKSkwUIhOkkJaeRJhSTmpFOklDI3rRUkgUCUoQCktMEpAqE7Nm7D4FQxNFjx8g9lcvxE8fIyT3O8dxjm9MnTuZsak7u8U1NfD9xMocjxw5z8nTu5ryDh7MRpYtJSRGwa/c+0gRiRKJMkpIFpKQIEYoySb12/qlpIvYmJ5MqFJIiFLInKQlhejppQhFJqamkCjbmJ6WkIRClb16b5JSNc01JESISZZCSKkIgSEcoSN9of6GYlOQUUpNTEYvSN65DmgixSExqSiqCNBHp4iz27k0hNU1ERsZ+kpIFJCWlkZIqYvfuZMTiLFJSRRvXOjWN5KRkBNeueWpKKiKhiHRxOinJKQjSBIiEYpJTBKSmiREI0klNFSEQZpKSKiQ1LZ3UNBH7ktLYuzeJdLGII0ezOXAwk/3ZGWRki/nxnh9x8NRBonNRgjMB/N8QiCZ+axlswhYxE1sIfymp/a0Cz/Xq29TgzN9a9sZD8zfbR+JYDxdkM2wbZGw6SiDiITIWIDIRIDIVJDIVIDoTIDYfIjDlITC10ceMnY9dB6KeWR/uWR+uOR+u+Q3dvkXUi2fWg2d2C4heS78UivsIT29o6CvabAdEvz6ITq9MsbS+yLvvvnMn3un/sLIDojtyM7kjIGqLmhlZjNDQU8uB05k09zdgDZuui0I8N9RMcVXBJqwlfvsqGNyebvgu+aZcmz5NvikX/in3Fr0xNG4NaviifhFEe81d10HqzQDzq7b1tzQ8G8AZtXPw5EFy809QVFpEcYmEMqkUSYkEcaYYUaaY/Yeyyco+RNbBw6QIBQjE6aQKRexLTUGUkYVALCZFICRNJCZNLESYkY44KwNBuoA0sQBRRibJgmTS92eRJk4nRZhCWnoagnQRqYIMBML9pAlFiDLSEaUfIE2QiSg9nVRRKnuSU0gTpSPMECPMEJIqTCdNmIkgY2P7ooxMUkUZpGdlk77/AClCEQJxJgJxOgJxOqKMLNLEQgRiMeKsLATpIkSZ6Qgz0kkWpCBIFyPOzCRZkIpALEKYLiJZkIJ4fwZpmQKSBClkZWYhTEkmUyjgSOZBDqfvJzszg6wMMUePHOLkyZPkF+STn59HQWEBZ/LOcOrUyY3pM6c5eeokhw4fIjf3BAUFBeTlnaGwsJD8gnxyT+YiKXaEs34AACAASURBVJFw5sxp8vLzOHXqFIeOHkSQnsyhYwdJz8okTSQkVSRElJmFMF2MQJxOetbGuaalpyPK2k+SQIAwMxNBRiapYgGCjAyShUL2paUhyMgkTSxGkCFCmCFEnCUmTSRGIM4iRZSCKEtwbT9iROkHEIjTSREkkbE/C1F6JvuSU0nP2o9ALECUIUSccYDktHTSROmIMzNIFSWTKkxHnJm90eaZ6QjEoo1rkZ6JIF2EQCQkY/9+0sRCkgUpZGTtRyAWkiYUIc7MJCk1GaFYiCBdSFJaMhkH9l87rzRSxWLSMsSI96eTeSCD3JzDVFUqKJUWU1CUT0HhGU7nn6SivoLAVJDgtI/glIfg7fzhvIkmYCrR5wTjPpwjNpwjNrwTrs1ndrvb8026N8ruTtsJzNgJzNhwTxhwjRs2ErXPbvQxgent9U9b+4mEf7w9asEWMW/u80jRQTTOQUbno0RnwoSngwSnfITi/o22m74GMQkLZXyjxGddl5q67hpii5HNIXXvFg1sE4z88b8Oyfvj3s0/DNeB4N+AxOtANO4nNH29bgLYjBffrAffrAf/LfqSBqa9xBbC9Fm66TZ23LBM553ShBElETV/x0F0xktw2kdoOsD0yhQvvnr5TrzP/6FlB0R35GZyB0DUt2kRre2sJunAHqpay7GEjNf96+42diCrL918OWztXG7HivhN6FeB6FbL553cZyLC1RGxITiQhiA9jQPZB8jef5Cjh49x5MgRikuKyM07QfbRg2RkHyT7yFEksjLKFEokMhllChny8grKFAokUhmlChllyjIk8lIkMgmlihLKlGVIyxVI5EWUKaWUKmRI5BJK5EXIyuVIpOXIlNWUymWUKeTIlNWUyasoLiulRCGhRC5HpipHXiGnRC6hRKakVFZBiVxGiUJCqUJKiUyBTFWJVKmiRCanVKFCIpVSIpMiU5VvpKKSy5CplEhVMkoUpUhkJUhVZchUckrkUkoUxcjK5UiVUmQVchSVSiRKCZKyYkpLSqhUyKiUlVJRpuTMiVwOH9pP9pEDnMw/RUvrOQwGA8PDw2g0GrRaLQaDgcHBQfR6Pf39/VRUVHD27NnN5QwGAzqdjuHhYYaGhtDpdOh0OkxGM3UNag4ez2D/0QwO5xwhv6QAeYVy49yUZchUys12SahEWoZMpaJUrkAiLaVULkeqVCKRliEvr6BULqdUUYJEXoi8UoZEKqVUXk6JvBipqgipSkapXE6ZvJIyhQJZhZQyhQyJVI5UWY5EKqNMJaVMWUaZohypsooyhQp5hYISRSGlciVlimpkKhVSlRSpKnFvlCNVKikuK6VMoUSmUiKvUF67VtKNe0kqR1GpQlZeRqmiDJmqjFJZKTKFklJZCTK5nOLSIrKPZJF9KIvcY9lIis+QeSCd7IP7yT6QRXFRAQ1tjfimgwRm/Pgn3XccRLdWK0qAaCJ9ky1ixjvhIjwbuGnA0Q23Gd9IQ7SREs5MYNaEbaQXS7SPwIyV8JyL0KyP4Oz2gqES+070JZ5xJ+agYRNEg3EfRwoPMuTo38w8sh2L8fjyCLWd1dR31zCyGLkly/KNAO921r8xiAa26DWjw4wX36z7Or1VEI3Ohxi099Fr7vpGQDQBnH8XEI1vgOjU8uRO+qYd+S8tdwRE7TEL48sjtGlaOCnN4exAI+agYTMyPjDtxejXbfqIbtsy8V8IRH2TboIzPmwhC3uEe/jRU4+zd99ekvelsOuZ3aSlpTE2MUrfUC8Hjx4mK/sgZwoKmJ6bY+XCBRaWl1lcXmF2cZGl1RWW19dZWl1h9eIqi6tLLKwssry+zPn1ZRaWF1m9uMrc0jzL6yusP7vG0uoc88uLLK8/x8LSGksrKyyvrbG0cpGllUucX1tlaW2B5bV1FpdXmV+eZ2n1PEvL69d+X+f8+nnOr61wfvUCC+dXWFpZYfXCJZbX1zm/usrSygqLK6usrF9gcXmVpdVVzq+tMH9+kZULK6xcWGV5fZnVi2ssX1hh7vw8a5fWWVhZZHF1iaX1ZRZWFjm/usSFC2usr61w4cIFWttbOXDsEEfyc6lta+b1N3/6lffsp59+isvl4oUXttf5P/vsRU7m5XDgcBYlcgkLKwssr6+yfukiy2trnF9dY/XCRc6vrrNwfoWVCxc4v7rK7OIiF59/nrWLl1haXWXlwjpLKyucX11n7eIlFpcXWL24xPn18yytrl1bZpnVi0vMn59jeX2NucVlVi+ss7h6nqXVlY31VtZYXFlh9dIaa5fWWV6/yNrF51laWWNp7Txrl1ZZXrvA8upz1+Ytcn7tPIsrayyvX2L14kWWVldYXFlmeX2dC88+y9LqKheefW7jfNbWWVpb5fzFFZbWl1leW2Zl5TwXV1d48cJFLl+4RDQYoKggj9OnTpCXe5Ts/SIe//EPSE5JYu8zz1BYkEdDeyOemSCuOR/OaSe+W8zp+3VBNJGsfWs1o+1ucyMAx0Mgbsc3bcYXN+Ac1+AY1eCPW/FPO/BNuQjEt2+xDcZ9m8fim9xIaO8csW2CydGiQ2hcgzsguo3jHFmMMOwc2MxT/c8AohPnx7n04kX++Mc/8ulnn/LJJ5/w6aef8dlnn/PZZ59t6ueff37ddEIT329HPvvss9tafzuyA6I7cjO5A5WVNiyiWzveBIBuHaKyRy23lND+vyKIBuJejD49h04e5NDxg5w+c5r8M/mcyj2FRFLM0vIiA9pB0vdncOr0acorVFisdgwmIzaHDZvdicFkwO5wYHdsTFtsZsxWE2arCYvNgtlqxmTR4XS50Rl0mK0GnG4HVocBs8WK1ebBbHFgsdoxW2yYzHYsVhc2uxOrw4jd4cJis2O2GrHYrBhNdkxmB2aLHYvVtDHf6sBosmK2WrA7HBv7tVgxWcwYjAasVicWqw2z1YrVZsdoMmCyGLDabJgsRkwWI06XC5PFgN1hx+1xo7cY0Nut6KxmNPohHE4bZpMZh8OEqlzOmfw85hfmMZhNzM7N8eGHH/LBBx9cp7/+9a/59a9/zVtvvcXw8DAzMzOb8764TEI/+ugjxifGOH7iKCdOHqOqRoHVZsLlcWCyGDFbbNgdDswWC06XB5PFgsliwmKzozduHL/N7sRstWBz2LFYbZgsFpxuLzaHBZNVh91pw2R2YDAacLgc2Jxm9KYhrDY7ZosVo8mEzeHAaDZitTlxOn3ojRvX3GyxYraYcbv9GE1mTBY9Lrdro33NDlxuLxabEYvNhNPlxWS2Y7KYr7W/GZvDgcPpunbfuK7dH2acPh9Gtx2DzYTD6cSs0+E1m/AabUTdHixaLcePHEWlktPUUE1O7iH2H8zkzOmTnDhyBElhPvVtDbhmgzjmfVhnXBvDxd8giCZGYYJx3+Yzmsjbue3tJvzK4w7801b802Z80xa8U6YNOJ104J1wEJjeHlRvdeXZCm2JvsU/5eFQ/gEG7X07ILqN44wthBly9NNv7fmnAdHoTBhPxIMv6GVyeoLFpUXW1y5w8cIlXnjhBV544QUuX77MSy+9xJUrV3jppZd4/vnnuXLlCq+88gpXr17ltdde+5K+/vrrX/q8evUqL7/88ua8V199lTfffJPXX3+dt956i3feeYdPPvnkTrDFl2QHRHfkZnJHfETtUctm/tBEh7T1gU2AaHN/w2anlcghugOi1+/XEbVidBmYXZphbX2Vi+sXWV1ZY3V1lfWLa3T0tnP4+GEaGuuoq69GqSynokqJUiWjRCJFXVOOVFqGpESCXCGlWFKIVCZBriilpKQEuVxKXYOK0hIZqnIF1TUKSkqKkCkKqaquJj+vmKqqSuRyOSUlJajV1VRUVKNQqKiuUVBQWERFRTnVagX5+QUoleWoVBVIJGWUlUkoLcunpKSM2rp6KiqVSCRF1DdUoiovp6Awn/IKKXJZOeXlKmrrapGWyVCp5FSrVRQXl1AsKUChLKOoWEJFpQylSo5EUkxtfQ0SpZyycjnVtUpyco5yJPsQFYoCTh4+yFl1Hc+vX8BuMOKw2VhZXWV+fp7Z2VkWFxeZm5sjFosRj8eZmpqitbUVs9nM0tISc3NzLC4uMj8/z8LCAgsLC5vTa2truFwuylXl5J48TmV1CVXVckrLiqhSK1EqKpArZFRUKiktK0WlUlBTW0FxsYTq6kpU5VKKJWU0NtVeOxcJdfW1yOUKZHIJ9Q0VSGWlFBWWUl4hRyqVoSqX0dhcjlQqpbJKSWVVFQq5kvJyOXKFgtJSGZWVKkpKJSgV5dTUVlJWJkOl2rhGJZIyZDIpSmU5EomManU56ppyJMWlVFaqqa6upKysjNq6SpRKJTkncqhWq6iqqqa4uJCq6nJkSgWlKiWyChklJaXUVqqoLy9DVVRCo7qChno1R47nMKAbxBd2c6o4F6vHxtWXrxALBZFKilA31+CaCeJa8OOcdeP7O4Ho1r5o6/S2tjnt3pK0faNSW3jORSDuIDTrwjflwDfluKXj/CLsJUA5cWyHC7IZdg78U4HoyHyUyeVxRuajBKd8dwxEo/MhBmy935iP6H8EiMZmI+jtOs51tqDTa7HZbTgdLrweHz6fD7/fTzAYJBwOE4vFCAaD2Gw2PB4P0WiUWCy2LY1Go/h8PoLBILFYjJGREaLRKCMjI5vLhEIhfvvb394JtviS7IDojtxM7ohF1Bz6a4R84mHdWmPZP7WR9D5hEU1AVwL4bifA558JRAPTXuxhC/aAnQvPr3Pp2Ys8e+k5nnv2eS5fvszzl5+jo7eDQ0ey0Wj7cHtNuN0ubA4dBtMAVqsNrb4Tm92ExWpEpx/A7jDjcBoxWzQ4nU6sVgNafTsulw+jeRiNvh23x47J0ofRpMdqtWI0DWOxmLBaLQwN92CxmnDY7Qxp2rHZbRhNGkzmARwOBzqdFr1eu2E1Mxswmnux2+3o9BrMVg02hwGdsQu73YbTZUFn6MbpcONyW9FoB7HZbBiMwxhM/QwMDNDR1YLNqcPlcjOs7cRi1eF02tEZhrHYbRjMOob1HZgsOmwWK05nN41qJbXKCv7w+98zGgpzfmGBzz//nE8//fQ6/fOf/8ynn37Kb37zG/r7+1m4yXJbFWBhYYFTp/IwmgyEokacLj02u4ZhbQdWqxOrzYjRNIzDYcVk0qLRdWO329AbhrDYBnE6XQwNd2A0DWO1mhjW9uJwWLE5dGj1HXi8Dmw2B1pdFz6fH4NxCIO5Dbvdgtk6iFa3sQ2jaRiL1YjFakanH8RmM2OzOhjWduF2OzCZteiMXTgdASxWPQaDjoA/isE0iN7Yh8fjxmQyYLUZcLkd6PTdDGsGONd6liFNOw6HA7NFi8k8iNvjwmQ1ozUOYLdasZqGcVp78TptWO2DDOh7yc49QYemB2fYyf6T2TgiHl756WtMjMaQSoqpaVLjiwfxzwfwTru3PZy9XU08M1uH5rdC0Y0g8Cs17sU/7dqsHPTXfMTuzSIZwRn3tVrqtweigWnvdRbRb8JH9O+lCcDyTbrxjDuJzYepPleJ+LCQ2nY1sbmN7AC3A6KJ/cQWwvRbe/5T+4j6r+VpDUxvRM1HZ66BaEcLg0MD6PV6HHYnTrsTl8uFy+XC6/VuAqnP58NoNOJwOAgEAgSDQUKh0N/UYDCIw+HA7XZ/aR2/34/P50Oj0XD06FGys7PR6XS3DRhbZQdEd+RmcmcsojEL0fkQbZoWStRFFFXm02/t2XyYEwEEiYT2W6NZ/yOB8x8NRD0TTjwjDrwxD2vPrXL15au88vKrvPDcZV599VV++ubrdPZ2cPT4QUyWPmzOPsYnRugfbMRo7mZ0NMrAcD1ur5HYiI+OrjqCQTuhsJW2jlqCQS9en5We/krGRibQ6rrpH1IzPR1Dq2/BYtExORWjo0uNw2lkdDRIb38T4YgTu91CW0c50agfm22I7r46RkdjaLR9DA51MR2fRKsbQGs4y8hIiIHBNuzOQcYnvXT2qvD67Pj8Zrp7awgG/Lg9Brp7zhKNBtEb+jCYOjCbDdTUSXE4B5mcnKB/qAGDsY/JyRiDgx34PC4CAQdt3eX4QjZC0RCOYAuNrRvW1T/96Y+MxCKsra7c8F5NgOXvfvc73G43ly5d2tY9vry8QkGBhGDQR2R0GLuzn9ionZ5+NaFAGLfHRHdvA5NTESy2Ibp6qxkdDaLRdmAwtxOPT9HZU43NMcjYeIj+wRY8Xiv+oJH2rgqCQQdOh53+oVrGx0dxOg0MatWMj0fQGJowmPoYHRmhq7sBp9PA1PQInV0N+Px2IuEwfYM1jI75cbp0dPZUMDYax2YfYnCok+mpGUzmPnTGTiYnowwMdGB3aBgdDdLdV43doWdwqIvOnkqisSAer56unhomJmI4nVa6exqJRf2YzX3oTQ2MT4awevroM7Rz4MQx+k0DBEe8HMs7SiQ+ws/f+QWT42NISyXUna0lOBXcqHY06SL0DYBowvfyiyD6tTTu+QKA/jX9WyC+9fdr6eFu49j9U57N/vGbsoj+vWE04ZI1uhRlT/ou/uW//Qvio0Imzo9ugGg8ETH/9UE0MhekvruGc0PNm8VT/hlAVGfTcq6jhYGhfoxGI3abA5fDhdvtxu12X2cZDQQCWCyWGwLl39Ivgmg4HN6E1EgkwtDQEAUFBZw5cwaTyXTbvqdbZQdEd+RmckeClWzRjRrPnfo2pHUlFJSfoc/SvQOit2oRjXtxxRyMzY7ywpXnuXL1Cq+/9lNeufoqV69e5fU3XmNIN8jJ00cZGGxicKiesbEwvf019A/WMTISprNHgcHYzdhYgKazcrw+E/6AgeZmBbFYALtjmHMdRYxER9Dq2ugbLGd8PEh3bxVDQ52MjPjp7CpHq+smGHRw9pwMj8eAz+ugobmIYMiBwzFIa7ucSDjA8FAH7R1qxkYjDA120j+oZmwsSHtHNXpDK+GIlbOt+bhcBrw+Ay3nyoiGgzicQzQ3lxOLBdFqO+jsqsTjttPcIqe3r4ax0Si9fdUMDp0jHHLT2V6Dw2wgGnFToT6O06PH6XPQb5FRUZdPVU05f/n0L0xOjrK6snzDe/WTTz7h888/5+OPP8br9fL889srq3d+aQlpiYxIxI/JVofV3kUobKaxuRCbxUIwZKWpuYxwxInTNcy5diljYyGGNc109ZQTn56kvVPOsOYssaiPc63luN1GwlELzS2leL0WvF4nrR1lRMIBjMY+2jqLGR8PMzBURW9vA+Njo3R1qzGa+olEvJxrrcBm0zASjdDaUYLXZ9po03MFjMYmMJt76O6pY3RkhKHhc/T21TI2FqK1rZZhTTujo34azxZitw9jtWhoaS3G7bbgDxho71QxNhLAYTXS3CRjbDSIRtdC96CM8ckwQ/oGOntrOXrkEDaLlpnxGGdOHCUyEubnv/w5U1MTlJWV0NjeRGA6SDjuJzLhJnSH4efOg6j3GmQ6/wqg0/4t6t0B0b8Bop4JJ6NLUZL37+P//L/+GwdPH2B0IUp4LkBg1ve1LaJbR9vyVaepaFEydj62A6K3CaIJCA2Hw5vD9r/5zW9uFwtuKDsguiM3kztiEXXErETmgjT3NyCtKyFfdZpuY8dm3rwdEN2eRuYCRGfDvPfBe8CGBW9r5CTA6PgITS01rK9PMzZu5bVXr+IPDBIManj55Zew2s8xMxPi8gvrGI1tXLy4xHPPLWEwtPH8c+ssLo5isTVw5aUrhMMmAqE+Xnv1Cv6AhrExL6+88iJudw8z8SgvvfgsWn09Fy/Os7o6T/9ABc9eWmZlZRKDsZlXX7nK2JgPr0fLK69cIRJ24PH28/LLL+J09TM55eHFF9cwWepYXZ3hhRdWsNnbef65SywujWPQd/DC8xeIhK1YLB1cfv5Z7PZOAkENV156CZe7h2DQxMtXL+OwDbA4H+fFFy/S2lbEwvwYz11cZmqiG7exm6ZSCW+/+goRk5Hzs/Eb3qt/+ctf+Pzzz/noo48IBAJcvry93H3LS0sU5xUwNzPN+JSG+IyXl66sYzQ1sLq8xKVLi1isXbzwwjoLCyNYbG289tpVvL5+nK4OXn3lKkZjI5HIxrmYTR3Mz49x+fIqFmsbzz23yoUL57HazvHS5cvMzUVxOJt49ZWXcHu7CQQ1vPrKVRyOPuLTEa5ceR6zuZO5uVFeeP4iZlsjly4tMjsXRm9Uc/XKy8zNRfD5hnnt1VcYiTkIBPS89uoVTKZuRkfdvPjiRYymehbmR3ju2RUMxlouXVpmdW0am72Dl158lsXZSYz6Nq5euUxszIIn2MVrr11lNKJjImxBdfwE4w4bzy8sUXnqND997TUA3vjpT5GpZLQOdeKbDROc8ROZ/M8Ion4C08FrGtgB0e2A6LiTsfMxUrOT+Zf/418QHREwtTJOaPb2hua3gmhRZT6V51Q7FtE7ZBFNQKjH4yEQCPD+++/fLhbcUHZAdEduJnfER9QWNTN2PrZZPam4qgCNa3AHRG9RQzM+YrMRfvvRzZ3Fw9EQ9Y2VWG3tqCoyOXkiA0lpKvmF+zh+VIRUkUphYTq5J1IpKEwj53gyJ07sobQ0kxM5Ys6cEiJX7SP32BHyzggpKH6KUydFnMnfTd6ZLHJzU5HKhZw+JST3hJCSsjROnUohPy+bQkkSx46mcOp0MlJZOjlHs8jJSaGoWEzOMRH5+dkUFO3h6JEUCotEFJWkkZOzG6lyLydPCsnJ2Ute4W5O5x6ioECEpOQAh7JTOJMnpKRUQM7xTE6fSebU6d3kHNtPQdE+CgszOHokFYXiKIVnDpN7PA1J0S5OH9mDIvcw+rNiuvMy6T98Am9+Mb4yBStT8Ru2XQJEP/74Y4LBIM8999y27vH5uVlOn8ihrOQMGmMJMnk6OSeepqBoF6dOHKYgX8ypM3vJzU3l9JlUCor2cORwKiUlYopL9nDieAZn8p+hqFjIsaMplJZlUFiYRV5eKkWSFM6cziD3RBYFRU+Td/oIxUXZlCl2cexYCgWSp5FI0jl14iB5+amcOiXgZK6Q/AIhubkCCvKOIZXvIzc3iRO5eygq2UXO4WPkF6RSUCAg51g2+flCCovSOHlCSFFRFsXF6Zw5nUFRyV5On97YjqI8lRM5Io4ff4biklROnRBRcOIABWdSOXo4lVJ5JhLZ0+TliKiWpNFRcoSWQzno8gswSeQ0HDvFL978GQDvvfceqpoKzml78MyF8c36CE95/hOAqOdagNJWEA0RmAp9AUQdOyD6FSAamw9ToMzjkZ98B6m6lNGF6Eb2gmk3/tscmg/PBmjqq6dlsGnD5WMHRG8bRAOBAD6fbxNIf/WrX90qBmxLdkB0R24md8xHNDwboHX4LKU1xRRV5m9aRD3jTnyT7s30TYkHPPEwf9VL5kaAeKPKJTdaN+GvlNCbrX+j7SVeZsG4j+h8CFvEvAmiifP5JjS6ECI6E+bD3354w7b+7LPPMJj01DdW4fMZ6OysYG5ugo6OCjSas8Tj47S0lGG3DzEy6qVGXUAk7CTgN1NTXchIzI/Xraf1XCkzM1MMD7aQdyoZpew03d1q+vtamI5HaTkrw2odZGw8SEuLDI9Xj9NpoLLyJOMTIazWAZqbpczMTKDTdpJzPIW6WjmDg210dVUzNz9Bd3cNJlMXI6NuampOEQ47CIXtqNV5+H0OHI4h6upKiUS8WC39nDkt4uSJAzQ3y+noqGBiPErrOQVaTQfT0yM0NcqxW7XEYh4qK3Lw+4yEvVYs/Qr0DXIqkveiPXaE4ZO5rM/M3LD9Pv3Lp5sgGgoEtg2i/oCHgqJTTMXHsDs7cTj6iUWdnG0oxmHV43Xrqa3MZ2IyhMXSR0tLGRMTUQYGGmltkzE5GaWxUYJG08J0PEZtTTEHsnbT3VVHa6ucsfEAHq+FpsZiRkdD6HVdtLVLmZufoL9fzUB/I1NTozQ0lGE09RKfGaW2ppgM8VMMDnbS3i4jEnXi9uhoaCxkJj6FTtdG6zkVk5Oj9A8009tby9z8BB3t1eg0rYzEvJxtLiY762k62qppby1lbNSP32ekoa6AiYkQZuMAjQ0lTMVH6B2op2+gipnpGNr2Skzn1JSL06lPF9GZk0PtsSO8da1W9nvvv4u8Rk6bppPIfJjotJfouJPQLUSvbxfmNv7A+Wnqq8cWMd8eiE4ngpUSldm8+Kd81yA0MTSfCF7afn90sz4qkVf0VoOVAtMbJT5rOqqo61ITWwjfeN9xz+bxJvxd/dOJdFI+fJMeQjMBAtM+/JNeAlO+zYpOofhG2qWNaT+BKR++CTehuP+6PnzreXsnXLhG7RvQNu0jMhciFPfjm9gAzsA19V+LGr9Z5aevut7R+dBmic+EoeNGUPx1NbGNRLDtzUD0tu6xuOdrg2ggENgEUZfLtTm0fisgmlgvoQmraCAQIBwO71hEd+TvLrd9Z/hGvFjDf83fF5kLEpkLXtfhBuM+bBEz9d01myk+3GMOvBOuzekvqmfcuW290bpfBNHtbisBrYnvwbgPU0BPl6F9c4gocQ53GkTDcwFicxF+8+Gvb9reoUgQacFpjM2NdCuVhHU6nJ0dDFRXMevxoK2rwXLuHFM2OwOV5dja2wkNDdOrVBDV6hg3mhisrGTEaMTf10dzfh4txUUYGhvoqVAx5XCgb6jHePYssx4PveUqzK2tjBiN9JQr8Q0OEhgcoKdcSVSvx9/fT0PeaTqVCuztbfRXVjLr8WA624SusZExswVdfR3W9nbGzBYGqipwdncT0enokJUR1moJDA5Qe+oklTnH0dTV0C6XEdXr0TfUo6mrI+50MayuRl9Xw4TFxJC6AkdPBzHjEKaGSgZLC6lL28twdjbanBzW4tM3bLs///nPfP755/z+d78nGgpz6eL2gpUW5mZQleUTj4bQt51luLGBSZud4cpKnB0dRLU6ehRy/AODhIaH6ZTLCGm1uLo76ZDJGDNbGK5Vo29sZMJqxdDYgPzQAfSNDQxUVeAd6GfUaKRDLsXd20tUq6FHf8KoZQAAIABJREFUpWTMYsXd3cVQjZoxswVtfS0DajVxl5vhGjXS7APY2trQ1dfhGxgkptfTq1IR1mkJa4bpUsgZM5txdnbQW1HOpN2OqbmBIXUFY0Y9w+oKVIf3o69Xo6utwtfXzYTZyEClgrB2mICmn64KKRGTHkdPG8MNaiZsZkzqKgxKJQ0ZmXRkZdN/8DC9R48xodPxlz/+iQ8+eB9ldRmtw61EFsME5ry4p+3XSmP+Y4PojZ7Lr9r3F/8ofx0QPZi3/5byiPqnPIwuRTdBNDof+goQdW1RD8G4l2DcTzAeIBgPEFuIEpkNE52NEJ0NE5kJMTIXZWQ+ujlvdCHG6HyMyExo85gTFau2psdKgOgXYfBWAfGr2ju2EN4E0a3vmTsFoonrnejr/5FB1Ol0Eg6HvxaIJoKUtvqJBgIBQqHQDojuyN9d7ohF1BIyfqkj2ZqaKTTjxxYxU9elpt/aQ7exgx5TJ32WbnpMndvWLkP7l/Rmy/aau67TbmPHDdf/onYbOzY7ul5zFwO2Xjr1bXQbO657KX0TFtHw3EZOuQ9/e3Nn8XAshLpEwmjPIMHWLiYGtHgaWvC1dDBntOE7287EgJZYVz92dQORjj5mho3YquqZHtTjrG3GWdvMvMFKtL2XQHM783ob7oYWvM1tzBk3pqOdffha2nHWnWVyUM/0sAFLdT3Rrn4ctc14mlpZMDmIdffjP9vB1KAed30L/pYOFkw2/C0dhNp6iLT34qhpYmJQx5zegqOumbG+YdwN565tW8do7xCBc10smhzYaxrxNrUyb7ThPduO/1wnkc5evHVnmero47zWiLOqlsm+AYLNzXir1IzWN+IrLmW5uZ0RZTUrE1M3bLtEBOjHH32M1+Xm8jYrKy3PzVFVkMeUx0ugqxd/WzfB1i7ctc2MdA0w3jeMq6aJWPcAzrpmPI2tzBkshNq6cTWcI9TajfvaNZrVW3DUNjM5qCPU1oO7oYXJIT3jA9qN+UM67DWN17ZhI9jWRbi9h5HeQezqBkJt3UxrjDjrzhLXGAm2deOsa2Zq2EBcY8RRt3FtnXVncTW0sGCy4z/XQaC1k2hXP+76ZiLtnSzoTbhq6pkZ0hJt78TX2MzUwDDTgxp8Dc3EurpxNzfjampiwWbH1dJCoLOTsd4+fHUNjLd0Yi2WEy6vY66+Fe/pEibae/jjbz/igw8+QKWScm6oDe9SGPuSH+O8C/fMna03vwOitw6iG6NFbrRuDTqPFq1bw7BjEIvfiM6lQeMYQuscRufSYPIZ0DiG0Lu16F1adG4N3smNQiWJ1Ek3A9HbAcQdEP2PA9Edi+iO/EfIHbGI2iLmzc5w6xC4Z9yJa9SOf8qDc8RGr7kL/9RGCb6/ZRH9okXzZlbNO2FRvdE2E8fom9woyWf06/BNujfLB34TQ/TbAdGR8RiFxXloh/oZ6u/BYbNQoZAyPNjPzGychrpq3E4b/b3dVCql+HweXG4HVRVK/H4PtTWV1NZUMTk9SUf7Obq62vB63JQryhge6GN+fo7aqnJMBi3dnW1UqeR43S78Pg/lslJ8Hhf1NVU01FYzMTGGyaijub6WoYE+VNISBvq6GRsbpbOtBZNeR39PFzWVSkKhAD6vm+pyBS6nnapyBYoyCRPjYwz199Hb1Y7LaUdeWkxLYz0zM3G62s9hNuro7+2mqaYao2aIWDREbZUSp8tKbX05dXUqGmpU1Ckk/On3v2PM6+HSyvmvvGc//vhjfF4vF9bX+fnPf85bb73FW2+9xc9+9jPefPNN3nzzTX72s5/xzjvvALC4tEBJaRFzc7MMdXdhGBxA09nFOVU5AZsdt8VCtURC0OOhUilDXalibHSEgb5uGmqr6elsp6ZCiUGnIRwK0lhbjcNuobG+hpoKJVOT41gtJprra/G4HajkZbQ2N7CwME9fdwd67TBupwN1hZKhgV6mJieoqVThdTvpaG2hplJFOBTE5bTT3FDLSCxCdYWSlqY6ZmfidHe20dvVjtlkoF5dgX5ogPGxEeorlTisJno7zlGjkjESDeP3uqktV2C3mlDKJDQ3qBkZi9HX10FPXwdGg5YKZSndbS0cyxQzHg3z06tXUBfm8fM33gDg3XffQaGU0d7XTmQ2SmA2gHfag/8bSGi/A6K3BqKRuSAa1xApB5N5UvAEuzN2sTdjNxnHxSRl7WVP+sb35P372J+byW7xM+zN2M3TaU+SdigZo19HZC6Id8JFZC543TD9DojugOhXyQ6I7sjN5PYtoiNerBHTdYFJiY45AZShGT/2qIU+SzeRueCXfDG3+0K4kd6oA9741/9lH9HtauI8EgEFnnEneq9m83y+KT/R7YDo6PgIp87k0tzUSE11FTJpGXJpGW3nWrDbbdTX1VJXW4OksBCFXIZGp0Wj0yCVlXEm/wx5+XnUN9SRk5tDQVEB6lo1RcWFyKSlNDc24HI5qa6sRF1VRVFBPtWVFQz09zE0OEC5UkFZiYSCvDPUqquxWq10tLVSXVlBSXER0tISFDIpR48cpqWpCXVVJbknjqOQSdHrtQz096FSyKmurKQg7wwKmRSr1UJvTzc11VUUFeajkEmpr63ZPJfaGjXFhQVUV1ZSVJDH0aOHqGlQUywt4uiZY5TXV5AvyaOyWsmHH35Ie+tZBgb6vvKe/fjjj/H7/Hg9HqqqqqiurkatVlNVVUVlZSU1NTWo1Wo6Ojr4yyd/4fzaKkXlUvyhIM2tZ1HXqMk/cwZ1RSWawQE0w0OUlEqQFBdRXJBPjboak8lAZ3sbKoWcwvw8FDIpclkZx48eoVZdTVVlBSdP5FBZrsJkNDI40Ed1ZQUqpYJSSTGV5SqcTgctzU3U1dYgKyujXKmgo70Nj9tFrbqaspIScnOOb7bRqdwTNDbUU1YqobiwgMb6Omw2K+damqkoV6GQy1DKpHR3dmAxGmioUSMvKeHk8WOUS6WYDQa0w0NUq1RUKBQUFxagrq7i8JGDSGVlNDTVk1+Uj0Ilp1pdSVaGmHg8zuziHPtESaxeWAfgV++8g0yhpLW7nch0jGA8jG/Kh/8OQugOiH5NEJ0PYgoYSDqQxO6MXezK2MWejN0czjtIanYyezN2b4LooTPZ7Enfxb7MPewWP0PqwWRMAf0miG49nh0Q/ecB0Q8++OB2seCGsgOiO3IzuWND84mO6It+lokO2h610G3s+NJyt+q/uR0r6Y2W265+cVu+yY1AK71Xs9lJfRXYfrEy1K3sOzy3UXf4w49uHKwEEB2N0tndRSgUxmKxEolE6enpZSa+EaDjcDiZno5jt9np7u3l/fc/4P33P6B/eBi90UhbZyehaBSNTsewXk8wGsFqt3O2pYWxsXEA7DYHE5OT2O0OOru6ePHFF3n77bcZGBjE4/HS0d6JyWzms88+Y3FxCa/XR3w6TntbOxqNDq1ORygUZno6jtPuoKO9k3feeYefv/VzNBotIyOjDA8N09vbD5/DysoqdrsDvz9AW2s7Xq8PgJGRUaampgn4A3R1dDA8MMBAby9Wqxmn20V7Twc2lwOH20FzawtvvPEGjU0NqGtq+Oijj27ahh9//DE+nw+n00lRURElJSVIpVKkUikymYyysjLkcjn19fV88uc/c351hfJaNe998D42u514fAa7xcZQTz+vv/oav3j7bWpr65iamqa3tw+Xy8Unn3zC1NQ0Wo0Ov99PV1c3eoORzs5OnE4XS0vnMRpNdHV384c//IEXL7/I4NAQY2PjDAwM4nC6AJicnGJkZIyxsXE6Oju5dOnZjWvkcGC2WGlvb8ft9uBwumhv78Dt9hAKhmhuPovZYgVgafE8Ho+XSCTCwOAQU9PT/OEPf2BwcAivz09fbx89PT28++57vPnGmxiMRubn5unp7WNgaJievj60egNjk5PExsZo6+lmZGKcE/l5xOfnGB0b4+CRw4RCYQDeffddpKUyOru7iEzH8MWDuOI+PNN/O1jwVnQrKDb11WMNm67z476dbd7omf5by91s2Zut/0UQTfxJ305AZXQ+RHVbBfXdNZsg+iXdUq50Q12EZ/3ovVqSDuxjd8Yu9u3fS/KBfRwtOEzawRT2Ze4hKWsvqdnJHDqTvQmlG1ZTEeag4TrYT7T3F0H0dqDzqwB8ZDFCj6nzuvSA29HtHo9/6q9lYwPTXsxBw+a8OwGh2wdRO84tIJqorJSIcE9Ezd9KxPzNQDQBoX6/f8dHdEf+Q+SOgWjCVygBX4lOOQF3rlH7dSmQtoLe7YDjN60JEDX4tF/5Atr6ItoKobcCxqFZP6PzUT7+/cc3be/YaJTegT7Or6xiMJmxWG0MDg8Tn50FIBiO4HS70Wh1dPb28s677/LHP/0Jo92GzelAZzLhDYXQGY2YHHa8oRBur5eO7h4m43EAJqamcbrdWG12hrU6Xn/9p/zpz39Gozfg8wew2OzYr4HS62+8gdXuwO3xMDSsxWAyYzJbmJ6ZweFyE45EGRzW8L9/9Q6///3vMVmt6I1GzFYbw3o9n3zyZy6/9BIWmw2tXk9D81lGrgHxyto6VrsDl9uN0WjAabNhNRkJBfw4HQ6cLhd2lxOX10N7dxe/+tWvGNJo6Ozu4pe//OVN2/B3v/sdDocDp8tJYWEhRUVF5OfnU1BQQF5eHhKJhKKiIpqamvj0L39hcWmJ5tZW/vjHPxGLxPC5vZj1RrQDGn72xpt8+NvfMjSkIRSJ4HC5cXq8AFy49Cw9ff0YTGY6u3swmMwYTGZiY+P4AkG8Pj8Dwxp++9FHvPve++iMRixW60Z7XoPx5dVVzFYbNruD9q4uLl2L9A+EwpgsFiw2Gy63B4vVRv/QEJHYCIFgiK7ePmwOJwCXnnsOh8uNy+Ohp3+Ambl5AHyhMG6fD6fbw4BGw7vvvcfvfv97bC43Hr8fjdGI0W6nb3CQiXgcu8dNKBKla2CQ8MgIRwvymF9dJR6Po5QqiU9uBIm99867VCkqaG87R3Qigm/Sj2fGh3f6xlbEr6tb+5mmvvpNX/VbAcf/SN0OiN7MQhtbCFPfXUNTX/11blHX6ZQL35RjizoJzwbQe7UIjqSxN2sPKQdTSMlO5kjeIQSHUknK2kvy/n0ID6dx8PQB9mXuIeVAEnszdpN+DUQjc8HrLMBbXbGcI7a/C4h2Gdq/ERBNLLsVRG9mFb+jIGrV0tJ+dhNEbdYNEHW5XNeBqN/vx+v1Yjab7yiIJkp8BoPBHYvojvzd5RsF0a1W0YSP6FZAu13r5d8TRBMW0a3nd7Plt57jzfxdb6SBuJfQdIB333/3pqXVAqEA6poqxkfHaG0+y/TkJKVFxZw728LHH3+MbngYi8lMOBgi5+gxxsfG+Onrr9NYV8/kxAQD/f0U5udToVLR2nKO5oZG4tNxCs7kUVNVxfvvv09nWzsdbe34vF5OncjF6/bw9i9+QW21mtHYCN2dXRQXFPLi5cusLC9TW61mdmaGCqWKY4eP0HbuHEadHpPBgN/rJffYccKhEP/7l7/kbGMjAZ+f7s4uCvPyefnqVebn5qiprGY0FqO0WEKtuob33n0X7eAQZxubGBsdRSqRcPr4MbraWxno6cbjcqIZGkYikaBQKjnbco633/4l59raqWuo5+23375h+yXSNxnMJgxGA0XFReTl5XHy5Elyc3M39dSpU5SXl/PJJ58Qn5tFWV3Be++/j0GvR6vR4Pf5OZR9kFAwxFu/+Dm1jQ2MTYzT3NBI3slTXHnpJWKRCA01tYyNjlKUX8Cxw0doaWpmsK8ft9OJ1WQm/9RppiYneeXll2msqyc+NU1LUzOlxRJ+/cGviYbDnGtqZmJ8nLxTpxnqH+DXH3xA69kWPE4nXo8HWWkZpcUSOtraONv4/7P33lFyXfedp/7d3X92z56Z9T+7HlvBsiyJtMQEUCIJgiRip8rvVY7vVQ7djRyInHM3OndXdcUXKnU3AALoBICyJXs0khWs2WPLaWmRSuuRNbYl2trP/lHVTYAAJcqkqBkP7jmf8+5974bfvV31+ls3Hufa1ascO3KYeDjCa6+9RlXT2L9nL69cu0Y6kebokWP88Ic/5Py5C4yPTVCr1kkm0ly7eo2/fe1vOXL4KDeu3+T8hYtEo3FS8RQTI+NcPHuBhfkFkrEk/X3bsNkdLCwvM/fKVXwRmbmrV3nzzTf5T//pq/T29nP6/GmuLV+lsVijtlRd3Tro/eJBQnTlh+5/D7xdiM7earzrer/yB1c4OnCIwxcPrArDXyxEVeZuN8jWJrEEzHS7ujB4ezD7jEi9QWwBC0Z3D2avESFoJZDyrYYNrm7ssrA6NH+3EL37Xa9cK/1SUxQ+KCH6y5SxIkZXhuY/CCE6URzn5NkTDI1cJpvNUiyUWufNK63z5nVdXx2e13Wd6elpVFWl2Wy+56H5h0L0oft1u195j+iK4BwuDXLk0sH7xOd/62J0RYhO6mP3PXvQtIC3i9BfVoiW54ocPHGAC4PnGZ8YY2oyy+TEFLlcjtx0lsPHD+MLeJDlENu39XPp4gXSqSSZdIpjx46QTMQ4euQwp8+cIhqR6e/NsHf3LhLxKBfOn+Xggf0kYlGsFhOhoJ/+3gxnz5wmnUqQiEc5fPgg8ViY3bt3cerUSWKxCP39vRw4sI9EPMrJk8fbcSLs2bOL/v5e4vEogwMX6e/rRZKCuF1O4vEo+/fv5eTJ48RjUXbu2MbevbtIpxLtuZ8vE4uGefnlfezcsY1IROb06ZOtPEIB9u7dTTQaZvu2fk6fPkmmN4kn4MQVdJLsS3D8zAn2HtxPNB1HcDnwRmQujIwQ7eslmkpw4dIlpvLTTGSzTExNMpnLMjYxwdR0jrGJCXq3t4bhw+EwsiwTCoWQZZlAIEAwGCQajRIOh5mamuL48WPIcogjhw6SicXYv2Mn50+cIB2JsL23lz27dxKLRTh1+gT79+8llYyza9cOtvX3kU4nOXfuLH29aUJBP06HSCqZ4MiRwxw6dIBEIsauXTvZuXM7iXiU06dOsHv3TuKxCCdPnqCvL8OO7f0MDQ2SSiaIRcMcPnyQdCrBiRPHOH3qJPFYFJfTTiDgI5mIcfbsafbv24MshThwYD/xeJS+3jQXzp+lf9s2pHCU/QcOku7t58DhIxw5doJEKk2mr5/de/cRjSc5efYs/bt3E02nsQl2wsEwO3q3c+HMBXqTvfi8AXoMJiLJJIlMEqtdIJpI4PL6eGb9ep5a93m2HdmNtlSntFihsFxEXXh/51b/jypE9RsKM8t1th3upe9g+p5377sRovlGDkESMPmMWAJmLH4zUm8QIWjF5DFg8ZkQQzaCaf9q2Oju+blCtHqztfC0crW4+uzdTjP4IIToLzNl4u56rSxS/WCF6FRLiJYq9wnRWq2GpmkPhehD92/KvfdV869UKcw+WIiufPFq8xqnR0+w/XAf6ivle8TnLyPUfq1CVBt94Op6/e6V+it1edvq+3dbVnOpRq42hTfqwea04nI78bg8eD0+PB43Pr8Xu1tEdAn4gl6iiTAGczfhuEw4JmGwdJPqS+Dxu7EIZnr7UrhcAna7lR3be7HZTHjcDvp6k5iMXcRjYWIRCZOxi2g8jDfgodvUSSwZwe1zYhFM9G5LY3cJuDx2+nZksIpmnB47yUycbmMXLp+TcFzGbDMSSYTxSz46ezpI9SYIhQNYBBPJTBy7S8AimIinoji9dmx2C9t29mG09BCU/SQzcXpMXUTiMlI4SI+55ZdjISyCiXRvAm/QSbd5C9t2ZXD77DhcAtt39GOxWgjKMnI8gcvvx2K34/J7cfm82Bx2nF4PnqAfvxzCHfDhCfixOkQEUcTpdOJ0OnE4HDidTrxeLx6PB6fTidvtxu/34/K58Ya8+IIeMpkEyUQEt11g544+HE4BwSWQ2J6k29aD3SOS7kvSaeggEpeJJSOYBROp3gRSpFWvbTv78Id8mG1GMv0pBIcV0Wkj05/CKlrw+t0k0nGsoplEOkYsGcFg6SaaCCPHQhgsPaT7k7h9TgS7lR27tyE4rDg9djL9KcyCEbfPRSQRxmDpQY6GiKeidBs7SfVn8Edkuq0WIukkgWgEo2gjs2s7VpcTq9tJJJ2iy2bBEQ4STMcxWC3IkkwmnsJutpGJJwkFQ5itVrzBAMGgHykUIBAI8PgTT/LpRx7h6eeeZteBHVxdatCcr1C9kac6r1B/gJj813L3HPQTQ0fvmav+oO/xr45/Xf53C9Hh0iAzy/V3Z3d7zmJiT5Tw9lBL3My/OyE6e6vBdCOLNWjB4OnB6DVg9pkI90uIIRtmrxGrz4RdEpAyQUweA1a/GZPbgCjZyDUm7xOi1ZutM+bVV8qUrxR+qfb+IIToLzM14+4fN9Wb6gcnRAvjnDhznMvDg0xNTVKYLlIuVVpTiBRldXi+Wq2iqiq5XA5FUVYXL70fQvThHNGH7tfl3vMnY/aVGfK1HM3lGvq8inZTQbupoN9UUK6XW/vOLVU5M3GK/iMZtPky+kJlFW2+THVBeVfcnW6Fd4w3//5QXVAoXs0xpg+hz79lr3qjhDZfRrlRRL1Roraoolwvot4stbhRQrlRRLlRRLtReVc05msU6wX8YR9GmwG3z4XP70UOSwQkP76QF0/AjcNrJ5aOEkmG6TJ1sn3PNnp3Zugyd3LoxEFi6SgGWw+79m4nFPAiBf1s68sg2iwk41HOnTmF1WykP5Pm6OFD2CxGkpkYfdvT9Jg6OXbyMIl0FKtg4sz5k/iCbhwugYNHXkZ02ognIxw/dQRTW+Rs29GLydJDMhMjlghjMHfx8qG99G1PYxXNHD1+CF/Qjd1lY8++HTjcAgHZx5HjBxFFG33pXo4cOoxgFYjKEXb0b8dqsrB/z15279yFxWjm9ImTxKJhBMHMoUP7CAV9yJKfs6ePE/B7CAX9RCISPr8Hr89LKBRCkqTVazAYJBgMrg69+/1+gsEgciiEFAwhBYNtQsghqX0vRFiSCUhBvCEPPtnNoWNHSPfGcLoFTpw8gT/kwu5xsOvAbmxOC6lknBPHjiLYrBw7coi9u3cjWC0cP3aUZDyG2WTk5InjSJIfl1vk9JnjuD12fH4X+/bvwmozkkhGOHHyCBarge3bezl0YC9GQwe7d/UTj8l4XCL79+0k4HcRCno4c+oYHq+TeDzCkaOHsAkWwhGJHTu2YTIb2L1nJ3v27sJms3Dg8Mts392PRTRz6PghoskIdo+d42dOEpCDODwudu3bi81lJxCXSW/PYLQY2LVrBy/v24PNbGTfnp1kMinMZiPReIRg0IckB5HkIJ97Zi1PPPUUG7a8xM69/Vy92WDuhsLM9TL1eQ29/W6oLejo8yr6vEJ1Xmt9d+dVqvMq2ryKuqCgLqioi62rMq+gzFdQFzTURRVtUUOZV1rhBZWjI8fIzmbRl3XUhdYzbVFFX9JRFhTUBWU1jbZYRV1oxdMWq2iLGtpSBW1RbeenoS5WWqzGUdGWWnloizr6Uq3tV6gu19CX9Ja9q+lbfmVBRV1o27tQacdp1atxp4Eyr+BIOhgoD1C/3VhN91YeKpX5Cmq7Ltqihr6o01iuktgfQ94hUV3U0drtpi9o6IsK1YVWXHVRQV9WUJfKqAsqzTszTF+dJn0kSXRfjMSBFMmDSXaf2UX6YJrE/hTpg31kDmfYdXo78f0R4vtjJF9OkTmYotCYYu5Wg8aCTqO9+Ey/WUFvv/PK1/JUF5V3Lc5/2XnBV1+dXRWiK50f76aX870K0bf34r6Xuc21Ra113OmCTmO+xtzSLBOFcU6eOdEWolMU8i0huiJCdV1H13Wq1SqappHNZimVSqsicqVn9BdRLpfvOVlp5f7KYqVms8n3v//990Nb3OceCtGH7p3ce/5kXJm7QrleorFcQ71ZQblRRr1RprqooVwvUbpWQF9QGVGHODTwMtpCCXW++CtFuVlAufH+oN4skpudYEQboLpUQV8oobVR54tUbuSpLSuo80XK16ffKn+VIsqN8ruiebNBSSvil31YHRa8IQ+haJBQJIgUCyHFQgQjAfyyH7/sw+V3IbgEbE4rgsuG6Bawe0QEt4BZNGG2mHDYRBw2AcFswWETsFttOGwCLtGOYDJjM5lxiiImczc20YQoWrDaTFitRgTRgsNhQxStCEILh1PAbOnB5RJX49oEE1abEavNiM1mwuUScToFLFYDot2CaLdgtvS08zRjE0yYLQYE0YzVZMZhsuO2uHAa7Yg9QstvcuCxuPBY3dh7RLyiF4fdhc1mQxBs2O0CdruA02nDYutBEE14fSJOlxWf24nf7cHn8txzXfHfHX47Ppcbr9O1isfhxONy43IJOJwmHA4PDpcZi6Ubm9WBIHZhsZiwiyIWUzfWbgNemwOh24hPcOAV7LjMNqxdBjw2O37RidfuxG41Y7eacdltiFYTdpsZh2BpYTNjF1rPnFYzQYcdp9mI02LCbbXgMLX8gqEbr2DF77DjtAk4bAKixYbdehc2AbfDgcfpwiEIOOw2HE4zVlsPVpsB0W7GbDFgtws4HCJmswmHw4nVasFut7b/Vj3YHVYE0YLTJSCIFlxuEbvdSjoTJxqX8If8eAJu1r30HJ9d8zhPv/A5dh3ZzdzylXbvXqv3Ur1RQb1ZobZURVuooC0oVBd1qosq1fY/aH1JQ13WUJc0KosVKosqypJKZbFMab7S8i+pFK6XUJY0KosKR0aPMTU3hXZbQ1nUKM6XqSwqqMs6pfkypYUSlaUKhRsllIUapZs6pXkFZaFBZUGjtDhNZbFEeV5tsVBoMa9TXqhRXihTXspTXlAoL+ioSzUqCxXKi2W05TrKkkppvtxOr1BeqFCeVyjeLFNeqLRtKrbiLFQoL5So3qlTmi8jJEUulgeo3q5TWVSoLKhUFhQqi2XK8wr5G0XKC2WURZ3yQoXKvELzTp3+o72kDqbQl6qUbxRRbqoo8yrKfAltQUdZrFK8WUFdrlBezFOe16gs1FvlL+V/Y/jSAAAgAElEQVRbdi1VUZZU9Nt6q50X6lRvX2m163Ke6hcqaLc1SgsK9aUas/M1atdVGjd1GvMas8s1Gosa1Zsl1JsFClenqN/SqC28v73O1ZutjfSv3JlZPZxkZbulXwUrPb3Z2sQ9NqzY8Z7qsqCiL7QF780qs4szTBTGOXXu5Ooc0VKxTKVUoVwu39Mbqus6qqpSKBQol8s0Go1VIfmLqNfrlEolVFW9J92KKK3VajQajYdC9KH7wN17/mTouk79ap1XvnCFmaUGzcXWOcWzy81V//U/uIZ+XWkPP9Xuo3Xs3C/m3aZtLOo0FrX3heZSFe16iXxzisaizpU7TZrLVWZvrdhQZe52ncaiTnNphbfbVKO5WP+FXF28QnVGJxD24/Q5iKWjpPqTyAmJSCpMsi+BFAvhk3ykt2W4ODTAqfOnOT94gXMD5zlz4SwHjx0iGAkRS8dJZVKkYgnS8QSZRIreZItULE46nmiH06STKVKpBMlknL6+1pzPWCxCIhEjkYiRSiaIRsPEYhGSyTjxeJRwWMLjdpHJpDh//hwXLpzj0qULXLp0gbNnT3P06GHisSihUIBEIkYyGSeTSROPR0mlEqTTSWKxCH2ZNL2JJKlIjP5kmv5kmkw8wc6+fnoTKXrjSXZk+khE4iQTaeLxBKlUmkQi0bYvSjIVI9MbJ9MbJ5mK0JtO0p/O/KtYaaO7SSVS9PWl6etPEo0kSSTD9PWliEVTJJISmUyGeDzBtr4UqYhMOhalP5UgE4/Rn4zTt0qC3niMbekkvZkUiXh0dW5uJp0knUrQm0mRSSdJJmL0ppNsS6dIRaP0p1L0xuP0J5P0J5Oko1F64/FV+lNpMokk6XjivnqkYvHVv3kmnSCVjpJMRUhn4mQySVKpBIl4jFQqRTqdIZlME4vFicdjxGIRIhGZYNCP1+vmyJFDDAxc5PTpk1y+PMD582e4cOkc6d4EFsHImmef5JHHP8Xa9WvZc2wPs4szVK8rNJeqzN5a2fanxsxy463vxlKD1rGTLRpLNRrLDRrLDZq3m8zcnmH2zgwzt+vUlurUl+rUl1sLoBrLNWZuNzk5dorCXJ7ZO634zVtNZm43mb0zQ/NWnebtKjN3ajRu1Zm5PUdjeY76YoPZO1dpLDepLirM3Kkyc3uW5q0mzTs6zdtVmrfmaCxdadl0S6WxXKOxPEPjVivfxnKNmRX/rXor7e3GXdRp3m4wc3uGxq0GjVtNZu7M0LxdZ+b2DNUFHWfczogyxJUvzNJYrrfrXqd5q87snbY9t5s0bzWpL1VpLte48cVrHDi3n0MXXubqq3PUF3Vmb88ws9ygtqAxe6vJzK056kt1mrd1Grd0GsuzVOdnWnnf0Zl7tcncq1da5bzatn35CrN3rlJfqjH3hTqvfGmGmTsNZm7PMrt8hasLs9y4fY25hSZXl+eYWazTXKxy9dUZmstVytfy6O/zXOD/IYRocfye7Zsqpco9QnRFJNbrdTRNo1AorPaSzszMvK9C9OHQ/EP3Qbv3/Mm4c+cOZbVIuVkir0+T07JMazmmtRx5fZq8Pk2pXmSiNM6FsfOUGnlKjTzF9rXUyFOsT7873p7uHdIWajny1ez7QqGWY0qZYCg3QKGW45VbV7hx5xo3X73OtVtXWPiDG8x/4TrXlufIV7Pk1Ely2hTTd5HTsq12UXNMq7kHhqfVHGW9REktsrA0z3/88h/zJ1//E77+za/z1a99lW988xv86be+yd4De3l8zeNs27mduWtXacw2mchOUlLKnDl3lv0HX+bi4CVKlTLFYpFKqYxSrqBWFLSKilZRKBdLlAutZ5VSmWK+QD5foFAoMjWVJZvNMT4+zsTEONlslrGxUUZHRxkZGWZo6DLnzp3jzJkzHD9+nIGBS+2XWJWBgQGmpqY4evQox48f5/z58+TzeQqFPOVy6wVYqVTupVxErRTRlBKVcoFKuYCmlNDUElW1gqoUUcpFNFWhXFIpl1QqFZVCsUS5vJJPmWKpQKmcR9Peqt+/hkqxtNoub1FBUSqoWgWlUqVcLlAqFSkVNcqVPJWKiqLoaFoZVSlQKeVQlQK6VqRczKIpBapaCU0poCkF1EqBstLaPqpa01FUhYpSQdM1SuUSFaWCXq1SUVr1U8sVlFIZXVGoaTpVVaVRraFVKuiqSk3TKBdL6KpGTdOpFEtoFQVNUe/7+5dLJUrlApVKiXw+Ry6bpVDIk83mmJiYYmI8y/DQOGNjkwwPD3Px4gXOnz/PmTNnOHbsGIVCnrm5OQqFAsPDw1y+PMj+A/s4fvII0biMw2NnS/dGNndv5OjZg1xfnuX67atcvdXkyq2Z9vnlc8wtz3L11tXV8JW2/+qtOeo3qjRu1riyNMuVpSuoc2Wy2iT5ausdMKmMU6jl0K8qTFenKDamOXrhECOFYQr1PPlalmK9QKE2Tb6Wo9jIUWxMka9PUmxMk6/lKdSKTOuFVrieJadPUGhMUqjnKTRyFBrjFBpZCvUC+WqBfC1LvjZBvj5BvppnupojX8uRr2WZrk2Qr2Up1Kdbaev3k6/lKNQLrTj16Va+tSz5Wo7EzhiXc5fatmVX7+dr0xQb05QaRQr1PNPVbKu+1SzaTIljZw9y4vwhlPo0RS1HuZalqE+SVycp6FPkq3ny9RzT9THy9UnytTz5WoFCI09WHyVXHWvVt55tt02RYqPcLitHsZFFuZKnPDtNZbaCPlenqBXJKTnKtTLFarFVRmOaYjPPpDaBer1C7UHzVR8K0V/YI3rPPqLFMuW7hOjKsPmK6JycnHzgRvcPhehD99+je8+fjP/6D//AoSOHcAdc2D2thTR2t4jdJeLw2LE5rIhuAafXgei04fCIOLxCC4/YDr+F09PGu4J9lbfHcTwgjtNrx+ERsLsFHG4Bu+ctHG+7txK+J567jcfWwm3D7hFweu2kehP8+bf/jL//8d/z4x//mB/9/Y/40Y/+C//wj//AV7/2FXyh1jxI0W1FdNkQXVZEl4DobuMSW6yEnW1cravDayeejvH973/vHdv70tAl1j7zNMeOHefaK9eZmZnl+PETDA+Pcvz4Cc6cPcfk5BSVikq1WkPXdDRVW0XXdGrVGqViiVw2x1R7O6KxsQlGhicYHZlgcGCIwcEhBgYGOX/+PENDw0xOTjI+PkE2m+Py5WGGh0c5ffosg4NDzM5eoVqtsWPHLk6dOs2xYyeYns4zNDTC9HSecllB06pt4ahSLiuUywqKolEqlShXSqhapS0mC6hahYpSRtOU1fu6rqFUdDS1hq7VKJUqaFoVRVGpVFp5qaqGoqgoSmtu1T1U2rz9/ttQVRWtjdpG13R0vbVIQKlUUZQKlYpCpdzyl0oVFEWnXClRrSloWglNL9NoalSUAmWlQLWmUFEKaHoJRS2i6K39RsuaRkXTqeh6y9++FhWFiqZRUTRUVadYqqAoGrpeo6KoqGrLJk2roqo6qqq17FVaK2x1TaNSrqCpGkqlQrFQpFgotP+O44yMjDE2NsHQ0DAXL17i8uVhLl8eZmholOHhCUZHJsnl8kxOTrX/3iMcP36CUqnMtWuvMDmZZdu27Rw5cpSz587yla9+mS996Yt84xtfozlbJdUbJd0fJrVNYtvuDNv2pEnvjNO7O0Pv7gzJHVEyu3pJ706S3pkgvTNDalec9K4k4aRMqi/C9l1J+rZn8IXsWB092F02rI5OrHYDDo8NX8iO3WPB7rbRaXwJ0WXC7rJidXQguqxY7T2YxU5ElwnB1YXV0YndY8Zq70FwmrG7HFjsHQiubhxeGzZnJzaHGcFlQHB1IjiNCE5LGxOCq7t934LV3t167jJjcWzC6jCultNKb0RwGRDdJmxOIxZ7Z+ud4DZiEbsQnFYEVzeiy4xZ6MHm6GmlcZoRXC2/zWFp2ey2IjhNWB2t+KLTgMttRnQYMFk2I4idOJxWrLbNWIUtrakw1i1YRGOrvs4tiC4josuCzW5q5efqQXB3IrosWB3dWOxbEZ1WBKcVs9CFw2vF6bUyNHaRV/9wmaVbi8zMXWHbzp3YnCIOrwuDaMbitmH12ugSe7AFRAqNIrO3Zt93MfpvXYiO5Uc5ceY4g0OtH/PFfBFV0VYXJ5VKJXK5VgdBuVwmn8+jKMq7HpZ/t0K0Xq8/FKIP3Qfu3vMn4yc/+QmHDh0iJAdxe114vG68Pg9urwuvz4PX78EX8OILeHF7Xbg8Dlwe59tw3EXrntPtuA+Hy34f7zbeu+Wd8vMFvKQzKX7wgwfPn/mrv/6r1Ta4v3734/a67sMTdJPeluKN777xju19YfACdpeDU6fOcO3aK1SrNarVGrVqnZMnT3P58hDFYrktRKur4mrlZVYoFBgfH2d8fJzBwUEGBgYYHR0nly0yOjLF8NA42akixWKlnU8FVVWYmBijUilTq9UoFksUCiUuXLjI5cvD1OsNZmevMDMzR6WicujQEQqFIsPDo6u2tIScTr3eQNNWhJOGqlXR9Nam6tVaA61ao6yoVGsNqrU6ql5F1aooqt4Wm6205XIFVdVX89K0GtVqvX2vdRrJymbQd0/213T9nnua/lbcVdrh1TSavip6S6UK5XKlvY1KDV1vlamoWkucqiVUXUGrqlTUcstfU9GqKo2ZGnpVRdEU1FoNtVZDqVapNpuUdZ1KtYpSrVLRq6i1OhVdb9Vfr6JXa2jtq16rU1E1yoqKprfu19obXa8sZtB1nUqlwvT0NBMTE4yPjzM8PMzg4CCTk1kmJ7MMD48xOjpONjtNsVii1m6/QqFILpdfFbv5fIHp6TxHjhwjl8szN3eFer3BzMwcJ06c4uzZs+ze08fWjg04nBY8gW58ARGnpxuz7SUcTgs2exdmYStWhxmrw4TF2YHFbsXq6MYkbsUsmLA4OjGLXVhsRgRbN06XAadDQBA6cNgNOO0CVutmRNGI3W7Gat2KKBiwWY2IYgd2uwnBasJm24wgmLDauhCETgShB9G+FUHcil3swWZtXR2iE5ttE4K4BZfThujYgiAYEe2diPbNiKIJQTAg2Aw4RAt2sQu7YwuiYEIUO3E4jDjsZqziOgTBiF00Ijq2IApd2GxdCEIHotiNKHRjs21FFCw4nN2IYheiYMUmbMVq6cLptGE0bkIQerALFuyOLkShB8FmQRBaNlmtXS3BaTdiF7uwmbfishuxix3YrJtwCDas1pewWV7EIdgQrJsRbAbsjm4EcRN20YTdbsJi7sRmNWA2b0EQNyIKRkShC6ttEy6HDbvdgtPVartPf+rj9PXFuXKlQaNW4x//8R+ZmMziD0nY3W5EtxPBJWLz2Nlq6cToNKNc0ZlZmqF68/3vEa3ebJ1v/0EJUf2GwqQ+9isRotW7hOjc4gyj0yMcO3mUwaEBRkdHmZrMcub0Wfbt28eOHTtIJBLY7XZEUWRqamr1h/O7FaE/T4iuLFh6KEQful+Xe8+fjH/6p3/ixKkTJNMJJDlEOCoTiYWRIxIhOXgPkhxCCktIYbmNhBSWCIaC9yOF/pshEAoST8TZ//J+vvcOvZV/+Zd/SSwRb6UJBQlKdxEKtJDahAJI4RByRLqHcFwm1Z/k9Tdef8f2Hhge4HPPPs2uXTtYWJin0ahzZW6WZrPOxYsXmJgYR1EqlEvF1T3nKpUKxVKRiYkJhoeHuTRwidGxUcbGxxkdHSU/XaBc0pmcyDM1mSefL1OpKOjVKo1GjWIpR7GURVGL5KanGBi4xOnTp9i9exfHjx/l6tUr1GpVZmaaNBp1Dh06gKpWGBq6TKVSRlUr6FWNalWj0azTaNSp12vU6zVqtXpbdDapVhvoeoNarUm12qRWa6KqVXS9ga7XmJlpUq+3eiGbzTq6/pbArNeb1OtNqtU69Xrrpau3hdnKkFOj0aDeqK9uVXL3C3plIcDKXn3VWhVtdRPp6qogrVY1Go1mO98q1WrLjka9Tq1Wp9YuV6vqrbIadZozMzRnmqvhWr1OtVGjpFbQGzVqM3Xqs01qsw2UqkpttoFa06nPNlB1lZnZJjOzTWqNGrVGldm5WerNGjOzTRozdaq16j3/SBRFYTqfZ3BwkOHhYYaGhpicnGRsbIxsNoeiaORyreH4ldW31apOvV5lZqaBpimUSgVqVZ3p6RwXLpznxPFj7NixnWx2ileuX6PZbHD9+iucOHGC8+cvkC9OcPDQPo4dP0A8ZSEQsOHxduN2d+B1ifg8Fnw+Ex6PgM8nEpQtuN1uPD4TTlcnbpcDX9CC12fF73XicRkJ+i343S783h48LiN+txtZsuB12Vq4Dfg9VnwuO2HJit8j4HM58Hs78TpFfG4LctCGx2kk4O9BClrwukz43N0EfCZ8Th/BYBcez1Z8bjtyyEDIb8fvMxL0Gwh4XQS8Al63iZDPid9rJRToxucWCAUshHx2/B47/sAL+D0ifo+VUKibgM+M22nA7zXic5vweyz4vSa8TjtSwEJYEvE6XQT8JkJ+Bx6nDZejC5/bTMDjJBSw4PNY8btdSCFD67ndiN9rwue24vcYCbiNBN0WwiELIV83PocTKdCF37OZgMtDOGgl6LPjdXcT9Hfjc9kJeAXcTgM+t4DHYSIY6MTjNBPwmfD7egj6XK029PSwZdNz7NjWx8EDO3numUdY/9zn+dNvfAtF1UmmevEFg/ilEO6AB68cwOYTcYTcVGY16jfrVG/evzXXzxOY72arLu16hdlbDS5mz3Fh6uzq9le/Clb2wM7WJu6xYUWIvtvV+Q+sz4JG7a5V81eW57g8OciBIy8zNjHKyOgIY6PjROQImzZtYuPGjTzxxBM89thjGAyG1e9spVJZfV+tvNN+HrVa7T4heneP6kqch4uVHroP2r0vQvTUqROk+1KEozLReIRoIkI4JhOOyshRCTkqEY5KhKMy4WgEuc2qPxK+j3As+uvhAfaEoxFiyQT7D+zn//27v3tgO/zN//M3ZPr6CMeiD6iPdL/ojMlE4mEisbtIhunf1fdzXwRDo5dxuGwceHk39ZrGK9dmUSp5lEqB4aEBTp44wsT4MJMTI5w7d5qLly5y6uwZTp89w2R2iompScYnJxgaGWYyO0UuP01FUajXZ6jXZ2g0mmiaRqlUIDc9yVRulMHLZzh77ghHju7hxMnDHDi4lz17dnD4yAGOHj3E7Fydq9dm0PQKml7h2LFDDAyc59Tp4wyPDHBp4BzDo4Pkpie5PHSRYjHH5NQYlwbPk8tNMjoyzHQuR2E6z+jICGMjI+SmphgZGiI7NcV0Nsfw5UEGL58nn59gZPQS2dw4U9lxhocvc+78GYaGLnP58iCTk5PkiwWmcq2N7FeYymVXmcxOMZmdui88mZ1abZt8scD45CTThTyj40MMDQ+0yhg6h6IqjI4Oc3n4HKOjo0xMjpDNjpHPZ5mcGGN4aIDJiVHGR4fITo5TyGcZGRpgZHiQYj7H0OUBJqbGKJanuThwjqncOJNTY0zlximUcgwNDzAydrl1b2qcifFhSsUcA5fOMzU5Srk0zdjoZfLTk0xnJxgZHmRiYpyBy4NcGhzgzLmzDA5dZnxygsnsFKPjY4yOjzExNUm5Umn/AKgyNzdDc6ZGsTRNLjeOppcolbOcPnOUSwNnOXLkZfbs3cmhQ/s5eHAf+/bvplSepjnTmifbbFY5euwwp06e4hvfaB09+uab/8ShwzJSQCDo7ybo7yDodiL722LRKyAFRSJREz63i1DAhN/Xhd/tJCybkUM2Ql4HIb+ZcMhE0ONGCvYQ9JoIedzEIyZCHoGgR0AOmpACVoIeO/GIhZDXRtDtQAp2EHDZkXxW4mErAbeJcMhATLYQ8BiQAl3IQQNBd4CIvJWgfwshr5t41Eg4KCIFuojKJiSfC8lvJeQzIvkchIMi0XAnQa+FeEQg5BPwuwRi8RcJBxwE3GZikU7koImAx0g4aCToNSL5LS2/y0VEMhMLCwRcLiKSgWjIic9pJeDpIuQzI3mdRMNmQj4LktdDLGIg4Bbxucwtmz0Wwn4DYb8JyWMkIRuJBjuQXG7icgdyYCOSy0NCthAOiAS8nUTlHoIeB5LfRtDbQ8AtEPDYiIY78buNRGUzsYiJkNfOtrSE27EJwbIFgK9+5Uts2fgEnRtf5A+/8EVq9TqJVBIpLCNH5db+umEfolfEEXSizKrUbzYeKETf656xbxeizaXa+16GfkO55/jYFVH6qxSic0uzjOfHOHj0AE8+9SRTU1OUSxXisQRPPPE4n/70p/nMZz7D2rVrMZvND4XoQ/dvzr13IfqP/8TJMydIb08RTspEUmGi6UjLnwwTTsmEUzKRpEwkFSGSjBJOxggnY0Ta13A8gtxmxS/Fwr8W7rZhhUgyRjyTZM+Bvbz22mu8+dOf8uabb/KTn/yEn/70p/zLP/8L3/rP3yLemySajK3mEY5HCCciyAkZOSkRTsiEEzJyQlptq9U2SsrEe2Ps2r+Tv/6bv+bNN9/kp2/+lJ/+9Cd3+X/K0NgQPr+TkN9BpTTNf/3xjzl29AABn5Nvf/vPOXHsEF/72lf4029+nY0b13P0+FHmrl7l8ugIQ2OjFJUKer1GoVJmcjpHrpCnUC6hKO0FM5rC6OhlvvrVL/MXf/FnWKxbOXHyANevz3D67GF++MMf0GhWMRi38sUv/QGTk6PMzTX4u//ydxw+vB857Of2nSVOnjrMN775Nb797T/DJhg4d/4Ut24tcmngLN/73ne5efMVtmx9kS984RalQpaqWuKN119nz85+3A4L//lb32RibIgvf/mP+O4bryMFXezbt40//vIfcubsUb773ddZXl7gpQ3r2LBxPSZzNx2dmxkbG+UHP/gB3/nOd3j99df5zuvfafGdu3jjdd54443287vivP46r7/xBt95/XVee+013mj7d+/Zjk0w0N29lZDs4C//6i/5v//sWxjMm7hw4RyvvrrMpYEzfPd732V2poqh6wXu3F5kdPgC1640eOON1+lLy+zb28/Xv/YVdm5L8hff/nO+8Y2vYbZ0kZ+e4sqVGcbGh/jhD39AuVygs2sjf/LVrzA2Msj8jVf4wfe/TyouEZMD/Ok3v87lS2f529de4+tf+yqbXlpHpVJiYXGRQ0ePkCvkuTA4QL5URK1VKSoVsoU8k9M5CqUCtbqGqpXJ5ca5em2G23fmkcIemjNV5q7UOXv+OG9893V0vUxn1ya+/OU/4sjRl2k0a/zo73/EkaMv89zza7EJPXR0bubAvpf54h++ys9+9jN+9KMfcuCAl3BQQPJ3EZU6kZxu4gEX6bhI0GslKokkEz0E3A7CUg9yqIugx0EiZm4LPJFI2Eo0YiTodRKN9iCFjIR8LpKpHuSgSNBvJRG3EpYsBLwiqZSJUMBM0GcnHNlMwCsSlqykklYCPgPRSBfJhJWAv5tIpItwuJugJ0A8sRlJ3oTk95BKG5ElG7LcQTLZ6q2UgibCkoGgXyQasZNIdhLwmUinRKSgDa/LTLpvPbGwC7/XSDLdSVg2EgwYiEVNBP0GwrKVWHSlLkYSCSt+t5N4vIt41IXXZUQKdiFLrTKTSTNyyEQ45CWV7iHoEwj4zEQjBoI+EzHJQFwyEfJ2k04YSES2ILld9CY7iYZfIuRykY5biEgCwcBWEkkDAZ+dUMCELBkIeK3IQYFkqgu/10A8biaRNBLwWBkbPsPOHW5stpf4/34GX/7yq/R0P4Vg7uQPv/BFdF0j05tGCgeRIkFC0SDBqB+HX8QlOVBnK9RvPlggPugkuvcqRB+U578W7XrlPiHaWGgdyHL383/NlIJ76jL/9jmiTcbyo5y5cJoPfehDDA4OUpguEglHEUURSZJap775AzidTiYnJ39lQrRerz8Uog/dB+7eNyGa3JFASoUIZ2TCGRk5La363yJMOB0hnI7eg5SKIKXC9xBKyA8m+Q7+t8d5tzwgzX22JGWifQmifXEEj4jZYUHw2BG9DgSPHYvTitUtEO2LI6fvr4uUkpFSoXuQ09J9hJMysXSUgOwnFA4iRUNEEmHkqEQkESGWjLLupef4+Cd+C0PXiziEHiKyF7NhM2uf/DRyyIXVtBW300R/b4RMb4yB4csUKhXGpibJFvKUVBW92UCp6oxMjPPykcMMjgyzb/9eNmx4gWefe5qtHRvw+R34/CIvbHiK555/DK/fhNPThS8g4gvYef6FNVhsXfgCdpwuM16fHbNlK5/81IfJ9IWZnBogGg8QCDrp6nmJZ9c9hT/owOW14g84CEkunl33BB1bnycqiQTcBgIeE0GPkTWPfQyX2Inks+C2d+O292A2vMCjn/kIHp8Fr9+Cw2XB5bawYdOz/K//2//Ehz/6f/KRj/4mzz73NOFomFA4jBxt9XLL0chqj7cUCROUJXyhIEFZQgqHkSIrvfRRIvEYcjSKHI0SkCR8wQBrnv4sv/lb/wcf/uj/hcm6AX/Ajc/vpMuwjqeffpJQ2IUcduLziYSDFp59+ncxG54nKlnwODuISDZc4kaeWft7eF1dBDwGAn6RSNhLd9eLbHjpGcKSm4BPIBRwEQo6WLvmURyikXjYS8grEg15sJs7WPPZ30MOOJG8AuGAC5/TzLqnHyOdjqPXa4xOTjCVn2ZsapKKrlGbaVKbaVJUFY6dPsWZC6e5eOkMDqeFF196lh7DFszWTj7/3GfZuPlZpLATj8+MJLvw+m08+dSnMJq24PULuNxWQrIHq9DJb334N/j3v/G/8JGP/SYDFwd5ed82PC6RkN9JKr2FSEBA8nWQkLuQ7C6SQTfbUg6CbiMx2UYq0YnfIRCVu4jKHYTcIpmkkVTMStBnIR63EI114/eIxBNdyFI3QZ+ddKYHOWQjGDDR22slLJvweayk0q3h96BfIBLbQMBnIxKxkM6Y8fs6icY6SKUs+P0dxGIdhMNb8bu9JNIbkCMvIgdc9PZ1I4fMSPJmMhkTAa9IKNRDJNKD32smFhVJprfg83aRyViRJStetzLnNgcAACAASURBVIlU/zPEo04C/h7SfVtaIjfQTTxuIBjoIBIxE0/0EPQ7iMa6SSbN+NwiiWQnibgTl6MTWe4gLBsI+GxkMhZkyUhE8pDu7SIYsBEMGIjGuvD7uohGuolHjAS8HaRT3STimwi6HfT3dRKNvYDfaSedMhKWLQQCG0lnevB7VkR4Dz6PkbAkkOnrwuftJJEwkky1phSMjZ5i+04HVut6/uWff8Yf/9EtOrt+H5NhI3/8pf+IopRJZxJE4xIh2UckHkKKB3AGBDySA22uROOm/kABpt11Ct0ve/zxg4RoY6nWzke5K0/lgeU8mPvj3t0Tqt9QyDeyq8/UV8o/1+Z3L0QVtPmWCK/d0JlbnOHM4Gm2797Ghz70IS5fvszUZJZUIoXH4yGycgxxMIjL5SKbza6ekNRs3DvP80HM3CU4y+Xy6pZPs7Oz952w1Gw2H84Rfeg+cPe+CdHE9jhSsiWwwmkZOfU2IZqWCafbQjRzF+kIUlJCSsnIbaSUTCQTJdIbbV3brMS/m7ufr6QJp8PIqTbpcCv8tntyKvyWPW3ku+Ol30JKyqS2p3CG3Kx5fi1PPvcka9evZe36p1m7/mnWrFvD85vXI6fkVj4pGTn5FlJSQkqG7ifRJhlCTkhEUxECsp9NnRvZ2Lmhde1oXbd0b2ZjxwaeWf95Hn/yU4jCJjq2PM2Tj/0ORsOLPL3mEZ587JOYe7YiB9xcOncSXStRbWhMl6eZyk+hN3Vmrs0wOjXKjj07SPYlSfWnyBenUdUy+/ftwWLuoWPrBh5/4pM88siHefGlNTz2+EfZtPkpzNYXeezxj7N5y+cxGF/gkUf+AwbTM3R0fZ4nnvwYHV2fY+3Tj2B3dDM6doZnn3uMtWs/jeh4kafW/C4vvPQZbPbneXLNJ9m0ZQ0dnc/x5BMfxy2+iKVnDWs+89uEPJvZ8Pzv8rnHP4bT9izrnv4dPvfER/A4N/HYZz/KC+s/g8O5mUcf/Q9s2PgULk8Hn370t3jyyd/nqaee4HPPrOHzz32OZ19cx/MbXmD9xhd5fsMLPPvCOp594TmefWEdz72wjmdfWMcz65/jmfXtey8+z7qXnufZF9axfuOLfG7dMzy/4QWef2k9T655lMce+ySf+N0PY7Q8zX/4rf+dj3/iNxBcn+Pf/bv/mefW/x4O9yaefOITdG9ei7lrLZ9/4uN47S+xdcOneXbNx4mGtvL85z7Ki89+gkiwm88//Xu8sP6TBHzdfObRj9CxZS12cQNPPv47mI3r6O56iic++1Hc4kZ6tjzJs2s+hs+xlRfXfYZ1n3+Uri3reOT3PoyxcyMnDr9MbnoCvamj1hSGJ4YpayVqM1XKepmTZ0+S2Z4hGA5y6Oh+mrMaI6MXSaQktna+wGNPfpJ1LzzFpx79bZ5+5lG6DOv57GO/w5atz7Fp0+d57PGPYBM3sLVjLU+t+Rg2cSPPr3+MTz/y2/z+o59g8NIQvakQjz36CV56fi2R2HqkgIWgdxOx8BYCdpFYUKQvJeB3dBGXrPSmugg6BKKhDmLyVoJOG5lED5mYFb+rp9U7Gush4BZJJrqJhA343QLpdBcRSSDgNdCbsRKRzHidFvr7LAR9BkI+kXh8E363lYhkIZ0yE/R1k4j3kEkJBHydxONbiUa2EnB7SaZeIhLZQMjrZlu/GVk2I8kbyPQa8XtsBIOdhCNd+DwmEnE7qd7NeD0d9PVaiUhWfC4zvdueIRVzEfIb6evvRA51EvJ3kUlaCPk7iUXMpBImgh4H8ZiB3rQNn1MkkzaQjDlx2bsIy51EJAOSz0EqaSQcMhKXffT19xDwWJACFpJxAwFPF7FIN4moGa9zE31pA8n4ZvwOO9v6O4nHXsQn2ulNGYlGrASCG8j0duP32gj4W4I34DMRi9hJZTbj93UQT3SRSGwlEhIZHTnFju12bNbn+Zd//hlf+tISBsNnsFs7+OIXvoSmKWzf3ock+4klwsixIKFYAKffhitoR51pCVHtZgVtvs1NBe1mpXWYwY0y6vUK6vUy6o1KK177NL6VeNq8gj7fOoFLu7nir6BdLzNzq87F7FnOT56msaihXS+3uPEW6o1Kq4z24Sqt8u4Kt+8p1+86UOR6Ge1mBX1BbYnERQ31epkxbQT1Rrltf/kt+24qq9e37Gz1dLZODFPbeanoN1toK9d2/VaE6OziDEOTl0n3p/jQhz7E+PgYoyNjRKMx3D4vQVkiEo/hDwURnQ4ujwwzNZ0jm58mXypSrJQpKZV3pFgpU1YVSkpldQSsoqkoeouWX6OiKRQrZb77vXfeteW9uIdC9KF7J/e+zBE9e/4MfTt6iWdixNJR4pkYid448UzsXtrHUkZSd5EME07IRFOR1XjRdJRYOkos0762iffG7svzvnhtfzQVuYdIMnwf0bYN4UTLBjkutW2518aVPMLJMKFocLWOK9dQNEgg7CeckNt5y0QSLcKJt4bgV7mr7qvhZJhYOko4IeOTvESS4XvqGU1FVvOXwk4iETMBfxeibRM282YMXRvJJGJcOHOO/GQepaDRqDZQ1DzThXEKpUlOnzlKLBGi27CZjZue58WXnkF0mNi9p5+x4cvo5SI3r83RqFYYvnyel/duI5OUMPVswNTzEqKtA6upE6e9E0ky43RswRd4Dp9vE17PJuyO5zB0bSCdkBgbOY1TNOAQu5Cj63E5NyOHNxGSn8HjNBAMdhDwG/E6zcTkHqTAevyOHhKRTuTQi4TcVqLhl/C7NxLydhOXTQScRuKyiXTSSuD/Z+89g+s6DnxPfNgP3le7Va7xzK536+1b1cyreto3s7uaHQd5LMsSKYogMnCRL246Od6cAIIAc85ZTGBABnNAZLISlWlJlChZYxMERTHa0tiWKCv99sMFIIBhJFuURUnnV/Wv07dvd5++5/S5539CdwcK0NRi7GARslKMaWoYehjdyNxBHpmJakSf7pux2924oZ1oQRXFzMxkJekiiiljhxRsQ+a+n/yAopL/h7/92/+Bv/+H/4RP+hf+0/+YxcSH/gHTLkDylWKK1WiBPKTqSmKWG8U/AcVTSdTOQ/Q8iC4UEtQLkIRCBPln6EY+fm8xqpqLYRYgBEpQlDx8wk8Q/PkEjQJ0aQKi/0FUJY+K8gcpK5uErvuY1lDHli2baW1rZ9fuTnbuamXr9g1sb97E1m2PkK6LIiteJj70M376sx9S7MrFCirMnT+dto5tHDi4k56+fexo3sSCRbOIRA3cnlJKywvIyZ2Iq3gKNVUFBPz5BIQpSPJkfP6JBAI5CIFCNLmamsoyVi5ZSeO0GF53KbJQiR2ahCqXIUmT0fSHCXjLUWQXIbsUTSgjqFUSjxQj1VRiKPlYegGSp5JYyEXYKkfwFBOyyrC0AhRfDZFgCZbmQvW7iYYK0cVyZF8xEduFpVQgeytJRsvRhFIUnxvbyEHxubGUSsJWGbK/mJBZRjLiQ/DkErLysPRcZI+XSHgyhjoFPSCSjFeiSC4U9WGiMddwvQsxjEJksQLbqiYSy9wRTUQqCCrVSO5ykvEHiZkB9EAZqVgRIb0UWyknHqxEF4sx5FLCVhmK10PUrqA27kOoriYaKiFq+ZC8Zdh6CbroQqypIB6pwFLLMQQ/ybgL2VuJLlQSsctQfCXYahERsxJDKCEZLiVs5iFX15CMFhDUH0au9hI2i9HVUhR1CrFEMWKgEkUuJhh04fcWY2hVxBL5BAL5RKPFxML5GEIVG9ctoTbpodz1cz788COefeYIZa5/oaa0gKefeJY9e/YQDocxTA1Fl9FMFdmQqBHd+FUfrbtb2NnbScdAK+0DLRn1Z5Ydh1tv0GiaMbpZul1H2unqa2HvsU5WbV/K8qaF7DnaQVd/yzh13CL/51l3Jr6NziNtdB1tp32ghY2712dmqjraPk43ltdGx+H24alo/2N13sSIrt+6jlgqSlZWFg0N01ixbAWCrJDrKqLcV0OZp5riqgpySgpRQhbBVBw7EcVORAmnE9iJGHYiRigVJ5xOEE4niNQmSUyrIzY1TbKxnnh9HcmGqSQappKYVneDolPTxOvrOHf+/O3wFjfgGFGHW/GFW8Z7773HosULSdTFR81nMGYTjNnjTOQ4cxj6VEZIR7PVUSM6ku76vH+OrjcXtzaiY74Laui2Oi5+7PcjJlHShNF66kEtEw4bCGpg1KTebP2fRyPvkNoRi2RdgtTUJNFUhOTUBJFkhGAsiGxIqLoHWXJRUfYwHncB8YjGovmzaN2+lW2bt7BtYxMdOzppb2lj/dqVJGMh/J5KSkvyeeD+n5CbPRFvTQUF+ZMpLsyhKD+bvCkT8VSXEglqzJ01jZbtmzm0bxcH9nSxbct65s6cRm0iSnV5KQW5ExD8mROaKE1AlgrwenLw+SZTXDCFWMhkzcr5BDyVlJXkYNk56FoFXu+D2KHJ+D1lKHIRYsCFz12OobkIWoUoQhUh24Wq5OB3l2MaORhqKYpQRjToRgtUZTp4aCWIgSJMo4xguBRfIB9FkdBUG8s2MYcvLMZKC6rotooeVNGGdX0aPaih2xqKKaOHtNGLE0X1E9Q1/vXHP6Sy6if85//9f+a//tf/CVH5Md/7m+8wefJ/JxqrRPKVowsuLDUfI1CNrZagyxPRhSoi9mQMZRKmnE/YLsDvKUCUH8SySpCEKnQt89g04CtDVQtR9YkE/MXoSiGalE3AOwm/Nxu/L5902mDtuqU0t2ylqWkz27Zvo7VlO9uaNrB44RxClkpFWRH5uQ9TVDCF3OyJlJcW4q4qZdKEn5GTPZEyVyGy6KW+NsHaVcvoaNtO76F9dLU3s2rFYurSMQxFwF1ZhLs6lxr3JCQpB79/MqpajCSWInjLqXCVsHrZatJJG4+7FDFQiWE9hCy6ULVcTCsX0V+BrlUQClagSZVYejWRcKYDjaEWoasFeKtKiYRKUeViRF/mrqGmTkHwlBEJF6HJ+WiSm0SiBClQhCIWE42UYellaFIV0UhJpvOSUIVhTEb0lqHJLhLxSgRfHkGzhFjEjSzko2uTMfQpCJ4qkqk8FGUiir+GSMSFJJSgablYdiGyUI2mujCNEgJeFyHbQzCcixgoJhGtIKhUIFYXk4g+QFSvQXTnkYzmY6sFaP58olYpsj8XRSwgEipF9FZhm8VEQuWInkpi0RJMrQI54MLQClGkQmR/OdFIKZpcjCbWEI8XowgVKEIJ4ZCLgCcXSy0gHqxCDeQRtQsImzlonmpqE0WY6gRUj5tUtBxdKUNRcrFDBSiiG1UpRdOKEPwuLKOGcDQfnzefUKiEWKQYXXKzbvUiUgk/1ZWT+ejjT3jqxABVFT+loiSPE48/w969ewmHI9hBCztkYQVNVEuhRnQT0AKjRrStr4W2/uZx+iJGdOfhNrr6W9hztINFG+awaMOcL8mIttB5JGNG2/qb2bBrHe0Dn8aN6MbyWobN6GfreiN66PhBFq1aSLW3iqysLCRZImiFWLJsOdNmTiegyQQ0BUFX8YgB/KqEX5EIqDKSoSFoCh4pgFcW8ClS5ntVwq/KeCWBsppqKjxuKjxuqnyeG+RXMuX5VYlgPMqFi7cePvCL4BhRh1txW8YRXbJ0MbF09AYTeTPzd730YObErw2bwJG4mxnMm+W/VbqbmozrNJJ/xGyOjR9rVhVTxo5a1DbU8vQzT/OrN37FqVdP8cqrp3j9V6/zxr+9wcCR/lGDerPf+HkVTUV4ZNN6Ond10NrRQkt7M7v27mLg6AAvnXqJdH2Snz3wY8rLc1i2dC6bNq1m/brlrFuzgtbmbezsbKero51tTVtZs2olL794kvVrVjI1FefVUy/TvG0LS+bP4dVTL7Nq6WI2P7KOk88/S/3UGDu7WnniiUdJp8IM9PfwyssvsXb1Svbu3kX3wYPs3rmLbVuaWLliEZs3r+Hpp59g5arptLdv4uWXX2D69Dh7du+kp/sga9cs49jRwxw/fpiFixM89+yT7D/QzOq19bzyyimOH+tGlqpZv3YtnR2b2LxpESeff57NmxZy4EAzv3zheTZunMNjj/bx1InHWLtqHice/wWP/aKXNatm8dJLz7N79w5WrZmBbtYwYeLPyZlSwMpVqzhz9gyvvX6a115/jdOvn+b066czn187zenXXuX0a6/y2uunefW1V8fr9Cu88uornHr1FKdefZlfvfE6r55+hVg8TE52Nj//2X2EI9UcOdJDf/8elq+KceRID+3tj7Bx82JOPv8c+3c309GymlMv/ZLNj8xnz65HePHks6xZmeCxXxzgycf7mD8nyC+OD3D80f2sXj2DF557jt27t9PUtJzXTp9m954tbN2+hBdffIH1axeys3MLT504zob1i1m3dgGPrF/K5s1rae9ooaurg/Xr1vLiyefZu7OTabVJnj7xJPNnzWDLxvW89uorrFiykOatW3jplyeZ3TCVw329PPaLY0xNRDm4by8729uYNa2O558+wdG+bvZ0tHBgVye7OjvYvGkt7e1NzJkdp619I889+wRLlsxg/brlPDThfu7/6X0sWbiMA/t28vprp3nqxKNEkyV4fYVUuScgqzm43S4CARchu5rqinxUuQxdz8dd4UIS8jG0EtyVJZhGCbpajrcmH9MoRFEepqY6H9PKQZanUFOdRyiSjxjIp8b9MKFQMZJUgLemgHC4CCGQh+hzoRuT8XmKkKUCYrFyvJ5sQqFSgnYp1VUPohvZ6EY27opC7NAkFPUhAt5S4olyNLUSUc4lGq+iurKIgFCMbpThqSnGNGvQrTz8/mIi4TIMuRixppBo9AFMuQzJm0simocm5SD6solYJciBXEQhl2CwGMFbimEUEAmXU1NViGXlEg5VU1M1hWCwFE0tpLoih3C4BFHIRRWriMaKkAQXilyCZRXgcT9MyCwmapci+aYQNHMJWzn4KopIRPMxtYnUlOUTDZVg6JX4AlOIJapwu4vxevMJhd1UV+WjKJWEoiVUVeUQDJaha7koYjXr1ywlmRAoL3sYgBeef4yC/B/gKszhhWd/SUdnB+FwGM3QsIImmqkiGSI1ohuv7KF1dwu7+rto7W2mtW/HON3MdH5u9W5nz9EO9hztIDbTZurCxC2N6F+6jhFzOmIuW/t28MjOtTc10Tcvo5n2w82Z5Uj4+s8DzXQebmPn4c5RI9p9/CDzls7FVVFCVlYWghCgoryK5StXsXbTBiRDwwgHsWMRQokYdiyCHrIxwkGC8ShmJIQRDmJGQljRMFY0PJpWC1n4ZBHJ0FBtE8UybirVNrGiYVIN9Vy8dOkLG4ub4RhRh1vxhVvGBx98wJy5swlG7UwPSkMafbQ5Eh6RpIsIauAGBRQ/oiaMS3czjS3rs9KKmjBOsiHdUJ+R+sqGNC7P9XUbudOZnpbinX9/56bb4epvr6IHNfyyb5xGftvNfregBsZ9J2oCAcVPlbeSgOJH0kVkXUK1FOK1MVJ1STRbRTNlpjWkaW3dxtatG1mzZjnr169iyZIFxOMhNmxYy7ZtW0in4jz1xGOsW7WChroUzz31JGuWL2XlkoWc+uVJVixayLoVyzi4bzf10+IcPnKIvr6DJJMRdu3uoK2tmUgkyKFDh1i9ei2NDdPZ2rSdpqYttLVtZ+BwN+0dGzlwsIunn3mcefOn09S0hW1bt7F82WJ6eno41H2AhYvr6B/oZnvLelavn8VLL73Izl0t1NZG2bVrJ+vWLWXDhkU8/uijrFm9gIMH2jnc38+KlTPp7t7NsaOHWbliPs8+/QRHDh9i+dIZvPD8E2xvXkfTtpXEEyYFhTnkFxTR0tb+RZv0DTQ01mPoFqZhkUxrvHzqJMeOd7N0RS3PPnuClraNbNm6itOvnGLj+jVs3bSGZ048w9qVi9m3ewcvPPscy5dOo697F4f272Le7BRPPPELDh5qZ+nymTz++KM0bVvPIxtW8Oqrr9Dcsp7NTUsYGOhn9cplbN60lkMHdrNj20Y2bFjF6jVLWbVqKdu2b2bRogWEwzZPPv4LNqxdw+zGeh49epg50xvYtmkDLz7/HAvnzmLT+jUcHeijoS7Fkb4eHj12hMapaQZ6DrHpkbVELJ2Bnm5WL1/KwjkzaW/ewYL5C9i8aQO7d7fT3LKRvftbOHL0IE1N6+lob6GstIQHH5jInNnzOHhwD7/5za/Zt6+LgJyNpFRS482hqmYimhZAUasRxGL8vjIMvQZJLsDUZVS1DK83l4C/Gn8gH1WpxDI9SEoeojwFQ3cjypMRpVwksRxFy0aSirHtalStAFEqRhDKkdVcRLEYr7eYGu+DqKobWXbh8T5MZeUkJDkPfyAXTStFUqZQ7f45AV8F3sDPqKz+KX5vGbKaj8dbjF8swBOYgiBU4xdKcZU9TJW7mIBYiqjmUVmVjyjmIwvFaFIFinofXnceoq8ASZyA1z0JvzcHwZ+NLBaiqC48vkn4vKUoaiFeXzaiUIms5uL3F+DxFOIqvQ+/Pw9RKMfrm4TPl4unphhVz0UUylGUMiqrHqCq8mEUqQBfzWS87mxkKZuAbwKSvxJRmEAkUogue1DlPDyeQtzeHHxCDv5AJR5vMZVVU5BkNx5vCV5hMpVVefgD+QhiLpLoprKiAK83j/LybJ468QRz59ZR4rqfwvxsXnj+l7zyyiusXr2altYWHn/icSZMehDVVBB1Ab/qo21PKx3dbbT1NNPau2NYmXB7f8sN6hhoHaf2gVbaxnzfNqz23h3sOtzOrsPtGHUyyTkR9hztpKu/dZw6+1tH84xT37DGrn94fWPVNhzfMdBKa+8OHulaS1tf8w31HFfHvhba+pppH9g+qrb+7bT1b6Nt5POI+rfRebh1nBHtfayHVGOS7//n/5WsrCwmTJhAeWkFJa5S8ooLqfTU4Fck3H4fflnCIwTwyxJeURhWYDTsk0T8soRfztwxVUwd1TKxoxGsSBh72KQGY1HsaGQ4HCGSjBOvTVPX2HDbjOiJEyc4duzYqLKyskbDDg5jyZo3bx6NjY036MKFWw+qDvCnP/2JK1eucOHCBerq6/BLPmoCbtz+amoCbmoCbjxCzbjwzVQTcFPtq7ohjVf03KCRssbqZmlvlc4j1FDtq6LSU0FFTTmVngqqvJVUeipG40bix2okj1eo4ReP/YKLly5y6fIlzr91nqFzQ5x78xyPPf4oHqGGippyyt1llFWXUlrloqSi+KZyVZbgqiwZ97mkopiiskJyi3IoqSimrLqUsupSisuLKKkopri8CD2k0zC9nvr6OhYsmMesWTNIpeI0NNYTClu4a8pZtnwh4aiFbWusWL4Y29KZVp9mxfKlhIIm0xvrWbp4IbFokHlzZzFn9gyiUZsFC+cwa/Z0whGL2XNmEIkGsWyNefPmoBsqkiSwZMlSFEXDtk3mzpvB4iVzWLN2KcuWLaBuaop0KkUqlSadTrFg4QJSqQQN0yOsXLWUWEJn3sI6lixeRDRmsXjxfBYsWEjd1ARLlsxk9uzZNE5Ps2rNQmbNnMXsObUsWjyH6Y0NLF0ylw3rV1FfF2P5srk88sgyZsxKsnT5HAKSG1dZMXmF+azfsIFLly5x6XJGFy5c4MLFjC5eujguPKILFz9dXv/dufPnmDN3DjVuH4IgM3tuHStXLaV+WpzFy+pZu24l02emWLJsDk1bmqhPT2PhvHksnLuMmQ0zWLJwHg11M1g4fyabN6xj3uw5LF44ly1bNlPfEGbeggaWLVtCbV2cxUvmsXjJIqJxgwWL61m3bh3T6huYWlfHvHnzWLxoEYuXLCQaC+HxVrNg4VzsoI6mS6xYsRRVEamrTbJsySLCtsmsmY0sWbKQUNBk7uyZzJg+jXQqxtw5M0mn4qSSMVavWkEsFiYcMlmxfAm2pRO0dWbPnkllRRWxWIxFixaQSkeZPXca69YvY+WqJcyeM5N4IoHLVY6m6dghle6e/bR37EBUi5BVD1bIizeQTyRmEY2rCHI5kahBOKqh6pUkk1EicRlfwEU4bKKZbqygQP20KKZdg25WkEoHUY0yFK2CRCqIYZejajU0zohh2G5000ssbqMaFeiGD1XzU1E1iewpD1JemUeVO5cHJ/6YyuopVLnzeTj7p0hqKVNyf8KkSQ9Q43uYybk/IHvKQwhSCbn5D1FaPhmPP5+Jk+6nqrqY0vJcHpxwHzU+F6WVE5k0+X5EsYzCvAmUFGWjGbm4iieTm/MAoljAlOx/pTD/QUShhOzsn1JWkUu1J5ec3ElUuXNxewrIzp6I15+PqyyHSZPux+0pIK9gAiWuPAJSCQ9n/ytlZYX4hHwmTfoZHq+LqppcJk68l8rKbGrc+Ux48IcIQjFlZRPImTyRgoJ7qamZhKsoD1kqpaDwYfILH8QvFTHp4Z9TWpZPdU0xk6c8SECsotqTzQMT7kWUyykpm8ADD/4rP7v/R3j9JWTn3M9P7/shP/rxP+H25pOfn820+gamT59OQ0MDa9au5pFH1vPzB+8nHA/hFqqp8lfSuruFzkPttHU309bTQmtPM63dO2jraaG9t/UGdfSNhFvo6Guls7/tpml2DnTQ0dtKV38bUxemmbFsGruPdNLV15bp+DRGHX2t49Q+Gm6jvW9suW03qH04XWd/O209LTzSuY62npabpP20nM7+9uG8O2jv20Zb3zY6+nfQOdBMe9922vu20dG/nY7+HcPxn94R3dXXRc+j3SQbEvzt//Y9srKyKC0txe8LoKgaoiKj6BrBSJhIIo4ZDI52YBJkGb8kYoaCRJMJook4sWSCWCpJLJUkUZsmVVdLsjZNbf1UauunMrWxgdr6qSRr00xtbCBZmyYUi2KFQwQjYRLp1G0zon6/n6ysrBtUVFR0W8p3+OaQdbPG8v3vf59r1679hxkLCgqYOnUq02dMJ5VOEk6ExikUDxKM2YTiwXG6oQPTmHdKx+rzvvt5s7yjnZjGaKQ+iikTUPw31cgd0OvvWI7ESbpIKB4kkeiwrwAAIABJREFUPS1FamqSeG0s83vjoUyPd10cdyfUL/vwip4b7pL6ZR8+yTtqnEfCI3nGfh6Jc/urP62XLCJJMqqqIkkSNTVuVFXGsnVUTUQ3ZHRDQtFFFFNFNhQkTUKzdBRDQVBFFFNDNhQERUC3DHTdRJE1DMNC1zVkWUJVJWQ1gKIGUFQfsurDMDQEQcLn8yHJASRZRFYEdENBEARkWURVdXw+P7Iso+kqmu5DNxRULYCs1iBJErISwDBUZEVF1RUE2YusKKi6jKj4UTUDM6giygKCJKDpEoYmoikimiqgaj40I4CmiwQkL37Ji9vvxo6ESdenSdUnSU5NkKiNk56WJjk1885tcmqCVH2S9LQU6fqMUvXJ0WVqapJkXYJEXSKznJrADFr4fSI+bwBVE9B1DVUT0Qw/qiaj6QKmqaDrJqpsIksyuhpEkRQUWUCVLGRZQFMUDM1A09RMWt2PrHrRNA1VlVEUCV3X0AwBUXJjWUFESUOSNGRFR1F1ZFlGVRUCghfNkNENGVUTMGwNSZcRVRHV0pA0GVHN7HNJl5F0BcVUkTQZSZMzbUKXUU0NxVARNQnZUBA1iYAiIKkSopiRpqkEAl4E0YumS8iKiCSJBAICqqohigKqGqC2LkkqHcWwavAL1UhqNVbQj9dXhW4GsEISvoAbRRPQrQAB0YdhS5hBGd1SCcd17LCGqotE4hbhmIFuqoSiKmZQxgoaRBM6miGhGhLxVBAraGBYBnZEw7R1QpEwsZSNqmuYQZ14MoSiyYQiBrFECEkViCWDBCMasqoSTeoEIyqqoRNLBglHbExbIJHSUTUBO6iTSIZRVIFYwiQSkzBMhWQyTNA2MU2NZEolFLIwdIV0OkQwqBMM6qTTUTRdwgoZxFMhDNPEDuvEUxFUTSccM4gmwsiaTDIdxQrqGJZBsjaKYWuEwhFiSRtN1whFbOKpMLqhEApnyjZNlWQqRCSqoyoqsbhONKZhmRbpdJRYLIQdkkjWmpiWQjhiUlsXR1EDROMmiZSGYSkk00HCcQXNkInEgsRSQeywjh02CMd0wnGNeCJCMpkmFothWRZ2yCYajxCOhpB0kXxXHkUVhWxp3UzHwXZaD+ygo6eVjp5WOnvb2NnfQfuhlhvU2dtGR08r7d0to8Mjdfa0jcvb1ZsZOqmzt509R3aytnk1a5tXsefIztF0o+l7WunqbR+v4fE/R4aAGkl7Q7rhtF29mSGaOnpa2dTxCB3dN0/b3t1Ce3cLuwY66exro71nBx29O+jsa2HnQCs7BzLvtXb2NtPR20xnXzO7DrfT0Z8xx1197XR2t3Pw2AFmLJiOYihkZWVx6NAh+vsHOHL0KAOHBzh85AjHjh/n+PHjtHe009bRztr162huaaZzZxd79+3j6LFjHD12lCNHj3DkaGZ5+MgRDh8+zOHDh+kfGGDg8GGOHjtK/8AA/f39HD9+nNVrVlM7tY75Cxcwb8F8lq9cccvZA/9cTp48eVMj2tPTc1vKd/jmkDVyy3ysNE377IxZWcydM5dYLIZuasi6NPqYe+yjbkkXkQ1p9LH353mMfqtH2TdL93nyjjweHzGVAcU/+pj+Zo//r+9xPdKDWjakTOcVU0bUBFRrzCN+UxrNP7Y82cg8Wr/ZKwFjf/tI2pH4sa8i+GXfpyZZE5B1GVlR8AsBFC0zZapmaKi6kplKVVdQdQlZk5AsFdFUEHQZwZAJ6BJ+TcSvSQQMGZ8qIGgKsmKgaUEU1UQQM1OTKpqMrAkoegBF96Novoz50S003cisQ9GRVAFBCqCoBqaloWoakiKhaDKaoaDq4vAA2CKi7EHRZHRTQVYFNFNHNTMjBUiahqKrBCQ/iqGjmAqiJiMoEqIcQJZ8GZOnqeiGSECsQZQlVCNzESBoAoppoNnaDdtw9NUMSx4dHUGxMvtNNqRxy4DqH90PiqUgazKaZqAbBpIioGqZ6Vkl9VMjrmgSsiKjqGLGuGsSiiqgaAEUVUJSfJ9KDgxPcSui6AFUXUFWVQRRwrB0VENA1UUkRUNUTUTNwC+piKqKqmVmLFN1GU3PrENW/Ei6hGDICLqc2d/D+1rQZfyaSECXRvd9QBsO65l4wZARTAXRVEbTiJqcaVd6ZnYwVc9M2StIAURZRDN0ZEVBN3RMW0eUfciqgGlryJoX1ZAISDWoRgBNl5DUALIuIGoiqikj6QKiJn3arhUBv+wdDotImoygCIhKxjD75QABWUJUA/glAb8kIKoygqIQkBUkTSUgq/glFb8sIqoGgqJS4w8gqhqSqhKQJSRNwy+JyJqKZoYQVQlJU5B1k4AsDk/r60fRfSiagKzKqJqa2e96AM3wIysSoiQhKxqyrBEQvAQECVUzkGQJRclcYEmyjKobBCQZryAgKgaCouCXJARFR1JVFMNA0jQkTUWQFQRZRdY1JFUjIGsEZBFJM/BLCt5AAEHOlCsIIqqmIQhCpi6yjqIqyIqEICiIUua3GLaCILszbU2TESUJSRHx+iuRNQ+KJlHjcyNqfjQ7M1OST/Jm2r7x6etUAUVAVDIXv7KcaQeyKmGFzMyxY0m4qkt4ZNt6ug510n6wlfZDrXT2tLOrr5OdvTdXR3cbnd3tdPV00NnTTsehNrp6OjJ5hvN19XTQ0d3Gzv4u9h/fx/rWdWzZuZl9x/bS2dtOZ2/HqLp6O25Yx66+zMDxu/q72NX3qW5Wn7Hx7Yda2dK5kc6e9hvSdfV0jNZ1Z28nnd3tdPa0srOvnd0Dnezsa6eju5mdfe3s6m+nq7eNnX0ZUz1yN7Wrr3201/ymHRt5+dTLn/ke5cunXmbw7FmefvYZTr36ChcvXeR3v/vdX2wA+gcG2Lp9G0ePH+PIsaP88sVfcuXq7RvQ/p577hnnLe6+++7bVrbDN4csgLvuumtcYzlx4sRnZ8zKYmhoiNlzZhOKBNHtGzvejL2TebOOQP9RZ56bmcHP2+FHs28cvmesIVFMeVzaz9KIEbUiJpqdGa4kmoqMK39sWsWUxr0re6syFUvO6BbmV7UUZFMaTZ/ZngYBJYAZsrDCNoqpohgammWiWcawzE8VNIdfUteRTQ3ZUJFNfVhaJt7QkTQT3QqjGhaSqo4pR0ezR7aTgmrKyLqBrKkohoCqBzGCGoIqICo6qimj2zq6nRljUDUzeVRLHt2Hiikj6yKKISGbCoqVuZunWBp6yEQ2VFQrU1fF1JBNFUkXM3d7NRvDsJFVAd1SsUJRrHAUyZSQLBnFtobvAkvjtqt8k31yszaiWkpmGKfhCw49qKGaCpqtoxgqiqEOGxcZ1VRHpRgqqqmgmAKKGUCxhpdmAC0oodki6nBc5rdrKEamrSiGjKKbaGYQ1VQxgiqapaIaJpJhIJoGim2iWCaabaJbOrqpYloZWaaKZmmotoFqGZmlbQzvcx3F1JGtjJTrPsumjmIZaMFM2aplDKfJ7APN0jMyDdSRqXdtA8VQh9ufgmJI6GPathE0MhMxDBt+dfRCQMEI2WhBE8lQUW0d1TYxIzZmxEaxVLSgiR0Lo4cstKBBMBbGjATRgyZ6yES1DYyQjR4y0WwbMxJBs4PIholsmCimhRmOYEWi6KEQoXgcIxRCMUe2n41iWqiWhR4MoQdDaLaNalmolo1hhzNPDkwJO2qhW0FUw8YK26hWpm2bwRCaaaNZNpplodtBdMtGt4OopoVqWKiGgWqamXWEQujBIKplj9ZRD4Uyy2AIKxpF1HRUy0azbSTdQLMz6ZXheml2cFg2mhVEM0yM4fWNXbdmWhi2jWbaGHYI3TaRdAEjpKEYmTZm2BaSHkCzVIxgEM2yhve9NrxfDPSghWoNz3YXsjDDFkbQJBgMEo/FsUNBDEtHtzL/DcGETanbxdJ1S2jZ20zz3u00791Oy74dtO5vpmXfjtG4sRqJ37FnGy37dtB+sJW2Ay20H2ylsztjTNv2t9B6sJXO3g529nexevsq1uxYTUdPO+3dbeN1qC1jgseo41DG7I587uxuH/f5Vmlb9u1gS+em0fqMVduBFlr3N9PZ3U7bgUy+kTzNe3fQur8lY2p7Omneu4PmPdtpP9hG28HhO8SHh2dq6u1g78Ae1m1Zy4mnT3zuDj1vnj/P2+/cfLrpz8u1a9d44403ePLJJznx1FO88sorvPvHP36hMq+nra1tnLdYtmzZbS3f4ZtBFkBjY+OffcUycsC8+OKL1E5NZ3qejxl3c+Rx+Nhe5OMMY0i7pTnVQ8NG1M7oPzKJeki7QVrwRpMxMlzPyNA9Yw3h9YbyZuY2FA+iWgp2zCKajjBtZj2p+iSJujiJujjx2hjx2hjRZIREbXz0MW88HRtNM1bx2kz8yCPkkfyJujipqZm8ibo4sVSUuobaca86mGETM2wSS8WwIjaxVIJ4Ok0kkSCSSA0rTTSRIhaPE0/EicXjxIaX8USCRDJBNBYjmUoSi8eJxKNEElGiyRjRVJxoMjlcXoJIIjmqcDJEJBEjmooRTQeJxOuIpiJEU1HMUAwjrBKM20RSEcLJIKGETTgRIpaODL+2ESGaDhOMWxhhDTOqE07HCKdjWHGbYDJCMBnFituEEhFCqSihdJRoOkosESERqyMaTZFIxzFsA0kN4pcNfKofv+FHi4ZRLI1wIkQ0FSEYs4kkw6PbN5aOEktFh+scIZIMj1M4HhwNx2tjoyMqCFpgeLiuEFYkSDgeIZJMEEvHiSRjhOIhYqloJm8iQiSZmSwgFA8TToSJpRLE0gliqRiRRIxIIk4kGSWSsokkQ0SSKaLJzH6OpoLE03HsaAQzHkKNWoTTMULJCOFEmEg8TDwRIZEIk0hGSCYixBMx4on4dUrcUolkckw4QTKVJJFMEE/EicZjROMRoskwkWQkU89kjHg6iRUJodqZi5PMBebwkFi2Srw2xrSZ06hvbKSucSqNsxqZNqOB9LQUdY1TqZveQP2sGaQbG0hNa2TqzOmkGxupbWygbvo0ktOmkmqop35WA6nGNOnGWqbOmkrt9KmkG+tIN6bHLNOkGuqonT6N+lmNmNEQZiyIFjaw4mH0iIkSNAilYkimhmhqqCETydLRwkFEU0M0ZbRwCDloIpoSatBGt8PIhoFiKehBA8UMoehhdNtGsWQkXUWzghjB8PBFlIIVjmCGbBRTQ7MsJE1F0hU028jEhW2MaBDJUpEsFS1koQY1ZNtADZnIto6gqyjBTJ0FQ0U0VbSwgRI0EE0ZNWRgRkOowczFhhGykA0NPWijWWamLoaJaplo9kh8CEnTkU0FzdZQDBvNjGZMeEhHt00000YPRpAtC9nWM3WwLdSghR4JoYdDaOEQWthCtXV0wyASiRCJRbBDFrqVeZpR7injoZyJ+DUfclgiEPShRDNLj+FGCPmRIyJSRLhBckREDAfwmR7cWhV+y4scFdETKkZSRUsoKHEZKS6hpzWEcAAxIqCntRuV0tCT6jgZSQ0toSBHRJSYhJ5UMVP6Dem0hIKeVLFrTcyUjpnSUaISeuLG8vSkihrLfOc1a/CZHtS4hhRWCNgickQl2hAj1hhHCEp4DT9SWEEMSYhRAXOqhlmrocQkrJSBHtFY88jqv1rP8k8++YSXX36ZEydO8MQTT/DE449z8uTJ276ea9eu8f3vf5+srCy+853vfGbfE4dvJ1kAp0+fHjWijY2Nny/j8AFz7do1LNuivLoMV3kJJeXFlJQVU1rpIrcgh3/+4T3c/U//jR/e+wMKivMpryqjtNJFSXkxpRUuSitclFeVUl5dllFVRmVVpaPfuypcuMpLKK10jcZ9mreMiuoyKqoyKq8uo6yqjLLK0oyqSkfDI2WXV5VRWlFCaYWLkrISXGUllJRn5CrPxJdWZuSqKKG8uoyK6nJc5SXUTatl646tN3R+uXDxAm9dfIvzb53nrQtvZTq7XBw7j/l4jXaUufAWFy6NKevCW5+WOSbt+bfOs2b9atJTU2imytIVS+g/3M/Lp05x9uxZhs6dY/DsWQbPDo3q7Nkhzg6e5ezZ8RoaGsro7FnODYfPnh1k8OwgZ4cGGTqXSTc4qpEyz3F26Cxnh84yeHaQwbNnGBwc4q23zvPar15n0ZJlzJo7nZdOvchbF95icOgMg0NnODs0OC7fxUsXePb5Z5C1AD7Zy/a2Zt586zyDQ4P8ZvAMvx48w68Hf8Pg0FkGhwYZHM6bqfubnDv3JuffOo9fCvB//eM9/PMPf8JPH7wPLaRx7NFHOfXKKQbPDvLm+Tcz+c6d5dyb50Y1dG4o8xuHbqLh7XDuzXOcGTzDnv17mTFrOhXuMpq2beHw0SO8+trpzLYcGhrNd+bsGc4Ojdm2585x5uxZzpwZZPDsWYaGzmV0LrP8NO/I9hlicPBsJnxukPPnz9Pd28OcRfNo3dnO0HDdR+qY2ZeD1+nGfX0rZfb5cHhcm/g0PlOvT/fdxUsXaeto4x//338krzAP3VIRFD/btm/lly/+kqFzQ1y5eoUrV69y+coVrl69ypUrV7g8oqtXuHz1KpeuXOHylatcvnqVK8O6PC7dZS5fuZxZXr2cKfO3V7hydfi7q1e4dGU4/uoVrv7uKlOnN5BTnEt2YTY5xfn86Gc/4p/+5f/m3vv/lSmFueQW55NXUkC+q5C8kkJyivPJL80nr6SQ3JJ8cktyyCnKJ7+omLzCAgpLCsgvyiev0EVhcTn5RcUUlOSTk5+bCRcXk1eYS35xLvlFRRSU5FPoKqCgqJC8wjzyCvMoKC4gv6SA3OJ8corzyS3JJbckb3h9ueS5CskvzSe7cAo5RfmZOrryKCgrIrswh6KKIqYU5ZFdlE1OcR4FpcWZsgpzyS3MJbcwj9yCjPIKcygoKSS/qICcguxM3QuKyC8sJK8wl8KSAgqLS8kvLCO3oIDi0kIKigrIzS8kp6CE3GIXeSVFZBfkkVNUSJ6rmLySIvJcJeS7XOS5iihyFVPiclFUVJT5z3QVM3HSRP6/H/4z/3jPf+fBhx9AtRWCCRstomIlTPy6l6KqAioD5chBCTkojpNki6Oz73mUGvLKcqkWq1DDMlbCJJiysRImVspCT+gE0zbhuhDhuhB22sZOWRmlh5dJCztpjpOVMNFjGnJQQg0rBFMWoXTwunQWViKzjNSFCKWDROrChNL2DWUGUzbBlIUR01FCMsXVhZR6XIiWjBzUEC0FyVKQg5npojPxKqKlUOapoKSmBDkiosdUAoYfPZx5+jJ9ZuNfzYi+//77PPPMMxw4cICjR4/S1NTEs88++6WsK51Ok5WVhd/v/1LKd/j6M9rq7733XrKysjhz5sznyzh8wLz//vs0NjZiGJmOFKIoEAgE8Af8VFZWcv/P7+cHP/gXHnroIaqrq6mpqcHv91NT40YUBSRJRFEUFEVGVmRkWUaRZRRFQZZlfH4fHo8Hf8CfkX+8AoEAASGQWY6Er/8cCCAIAj6/D6/PiygK6Iae6TQjy+MkyRKSlHkHTJQkJElEFEUCQgDLsr7yK7qnn34KV6nrK63Drfjo44/48MMPP1fas2cHKSsrxef3sn///r9ofYlEgr//+3/gvp/dT7W7mv7+/r+onM/ipZdeZu/ePV9K2Z/FRx999JWs91a88MIL/OhHP+Lee++ltNRFY2PDV10lAKY1NOD1efH5vJSXl3P33f+Nv/tf/o4f//jHeLwePF4PNZ4R1VDj8eDz+8bIO/6zb2Tp/1Rj40fCPu/4/L6xeX3XxXmH/4N8w3Xy4vF68Pq8uGvcw59rqKgop8ZTQ2VVJdXV1fj8Pqrd1bhravD6vHj9Prxe73XKlDM27Ha7x/zf1lBVVU1VVRVudw3V1VV4hreHu8aDx5Opi8fjGd1eXp93vLxe/H4/Xq+XaDTK/PnzmTBhAv/lv/wf3HXX/0lZeSm7d+/i+C+Os2btGlpaWzjUfRDbtlAUGd3Q0XVtvAwdy7awgzaapuLzedm8ZTN9/X309vbQ19dHT283Pb099PT20H1duLtnWL3dmXQ9w8sxOnx4gI6OdhYsXEB/fx/9/X309fddl65ndNk7XP6nur7MTFxvby99/X00Tm9EkkVM08AYK8PAsi0s20I3ht/hlWUWLV7EkWOHmTd/LoWFhbhKXQSDNhs3bvirGdGPPvqI559/nmPHjtHV1cXx48c5d+7cl7KuCxcukJWV9aXccXX4ZjDa6tetW8e99977+TMOHzAffvghJ06cyByUvX309PRk1J1ZHjhwgIMHD3LgwAHWrVuHZVqYholhGMyfP5++vj56e/vo7emlt6d3NH9fXx/79+1HlmTy8/MpLCwkNzeXvLy8P1u5ubkUFhYyZcoUCgoKmD59Ov39/cPr7s3Uva9v9HNPTw/d3d2jdenu7ubQoUMcPnyY99577/bvhc/JSy+9xIwZMygpKWFgYIAPPvjgK6vLF+Xy5cts27aNHTuaefXVV/+iMs6ePcvChQt4aOJEKisqaWtr4+OPP76t9fzVr37F4sWLCQVDHDx48I4zhn9tPvroI44dO4bH4+G+++4jFosxODj4VVeLp556il27dnHwwEG6urpYs2YNy5ctZ+PGjezZs4f9+/ezb9++cTqw/wAHDnyW9g/r86T9/Nq/f39m/fsz4f3793Pw4EF2795NXV0dpmmi6zqxWIyuri4OHjzIvn37OHjw4Oj/0cjy0KFDN13HoYMH2b9/P729vdTX11NRUZExp243mzZtGs17cKQ+Y+o29vOBAwc4sH8/3YcOjX73yiuvsGvXLmpqaigsLKK4uJiNGzcC8MYbb9DY2MjaNWv593f+nZ1dO5neOJ0Z02cwY8YMpk+fPqoZM2bQ2NBIw7QGGhunM2vWLC5fur1znX/wwQe0trSSSCQ5+cLtN0NPPvkkM2fOpL5+GjNmzMj8zmGN/M7GxkZmzJjB7FmzePHFFwE4f/48lZWVTJkyhWgkymuvvfZXHfT98uXLnDx5kmeeeYbXXnvtSz2ffN4nrQ7fTkZb/dtvv01TU9Pnz/gXHDAfffQRly9f5uLFi1y6dOkzTd0nn3xCY2MjgpC5yyqK4g0avfP5GfJ6vQiCQCgUYt++fX923e8ELl68yODgIH/zN3/DuXPnPvfdx28y7777LleuXOHSpUtcvHjxthvFK1euMDQ0xJtvvsng4KCzzYe5evUqf/d3f8f58+d5++0v1mnCYTx/+MMfuHjxIleuXOG3v/3tbStzaGiI8+fPMzQ0dFvKfOedd7h8+TJvv/02v/vd7/j9738PZI6Zixcvcv78ef74xz/ypz/9iT/+8Y+89957N+jatWvjwteuXbvtF5Pvv/8+Fy9e5MKFC1y+fHtN7kj577777k1/3/V69913x/2H/OEPf+Dtt9/mnXcyE6X8tWcf+uijj77WNzQcvhn8xa3ema7rq8PZ9g53Ak47dHC4vTjHlMO3EceIfg1xtr3DnYDTDh0cbi/OMeXwbcQxol9DnG3vcCfgtEMHh9uLc0w5fBtxjOjXkFtt+5MnTzpDZDjcNoqKimhra7vl985/gIPD7cU5phy+jThG9GvI9du+ra2NBx54YHQsWAeH28FIe/r+979POp2+YWg3p605ONxenGPK4duIY0S/hmRlZfH222+zbNmyG6ZndfaLw+3i+naVlZVFdnY2TU1NXLt2zWlrDg63GeeYcvg24hjRryFZWVl897vfvalRcPaLw+3iVu1rbPtzcHC4fTjHlMO3EceIfg256667OHbsGJWVlf+hWXDk6Hbru9/9LpqmcfLkSe66666v+lBwcPhGkZXlnFcdvn04RvRrzpkzZ0in0+PukDo43A7GGtCxj+QdHBy+HJz/b4dvI44R/YZw7do1mpqauPvuu7/qqjh8Q7jrrrtu2knJwcHhy8E5rzp8G3GMqIODg4ODwx2Ac151+DbiGFEHBwcHB4c7AOe86vBtxDGiDg4ODg4OdwDOedXh24hjRB0cHBwcHO4AnPOqw7cRx4g6ODg4ODjcATjnVYdvI44RdXBwcHBwuANwzqsO30YcI+rg4ODg4HAH4JxXHb6NOEbUwcHBwcHhDsA5rzp8G3GMqIODg4ODwx2Ac179cvj444/56MMP+eijj/jwww/5cDj8ySeffNVVc8Axog4ODg4ODncEznn1y+HCxYscPLiHQz27OdSzm96+bh599DHef//9r7pqDjhG1MHBwcHB4Y7AOa9+Obz55jm2bn+Epm2r2da8hrb27ezbt48//elPX3XVHHCMqIODg4ODwx2Bc179cjh//k02bl7FmnULWbNuPtt3bHGM6B2EY0QdHBwcHBzuAJzz6pfD+fNvsmnzGlatmcfK1XNpbtnK3j17ef99x4jeCdxWI3rmzBkaGxt54IEHvlClHBwcHBwcvkk0NTVRVFREW1sb165du2kax4h+OZw//yabt6xnxar5LFsxlx07trF3r2NE7xS+sBF9++23WbduHffeey9ZWVlkZWVx11133bYKOjg4ODg4fN1pamoaPUd+97vfxe/3c+zYsXFpHCP65XD+/Hk2b9nA8hULWLR4Dtu3b3WM6B3EFzKilZWVfOc73xk9uBwj6uDg4ODgcCNjjej158vGxkbOnDnjGNEvibfOn2fLlo0sXb6QefNnsc0xoncUf1Grv3DhAt/73ve45557bnpgOXLkyJEjR44+W9/5znfw+/309PQ4N3G+JN566zxNWzexdNkC5s6bwbbtTezZs9sxoncIX/jy6/Tp06TTae66667RA8s5mBwcHBwcHD7l+jui2dnZNDU13fJ9UYfbx9C5s2zbvoklS+czZ+50tu/YzK5dnU6v+T+Djz/++Esr+7Y+Bzh27Bh+v5977rnndhbr4ODg4ODwtaapqYm7776bZcuWceHChS9U1tWrVzl58iQvvfQSp0+f5syZM1y+fJl3332XDz/88DbV+JvDm28OsX3HZpYsnc/sOY1s276ZXbu6HCN6HR9//DEffPAB77zzDhcuXOD111/n1KlTnD7sksSmAAAgAElEQVR9mjfeeONLm4nKeSHFwcHBwcHha8SvfvUrHn/8cY4fP87AwAB9fX309/fT09PDY489xtNPP81zzz3Ha6+9NmpSf//733Pt2rVvpVEdGhqktXUri5fMY+asaTRt3fitNKKffPIJH3zwAe+99x5vv/02Q0NDvPHGG5w+fZpnn32WJ554gu7ubgYGBuju7ubw4cP09/fz+OOP09fXx3vvvfel1Msxog4ODg4ODl8jXn31VXp7e+nq6qKzs5O9e/dy4MCBUXV3d3PkyBEGBgY4evQo+/fvZ2BggCeffJKnn36aF154gZMnT/Jv//ZvvPXWW7zzzjtcu3btGzv/+tC5Qdo7drBo8VxmzKxnS9MGdu3+ZhrREbP57rvv8rvf/Y7f/OY3/PrXv+aFF17gueee47HHHuPRRx/lwIED9PT00N/fz5EjR+jt7eXw4cPs27eP7u5u9u/fz+7du9m7dy+HDh3iwIED/Pa3v/1S6uwYUQcHBwcHh68Rzz77LN3d3bS3t7N792527tzJzp072bNnD3v27GHXrl2j6urqYvfu3f8/e+/9HGd2Hmr+B/vDbrn2rr1ly76SbV3r+q59b/nuXam8Zfta9sqjmSFBRIbJSfZopAmShjOa4XCGCaGRgUbobnTOOeeEnDMJECBBAMyZRCJA4NkfGt0CGIbgDEmJnu+pOgWg++vvfImsp9/znvdgtVrx+/243W6CwWBGPDweDz6fD7/fT2trK+3t7QwPDzM+Ps7p06e5evUqc3Nz3Lp167HmCT5OZk9PozeoEJUe4ZNPP6S+oRrTU5wjurKywvz8PDdv3uTy5cucOHGC0dFRenp66OjoIBqNZqLk6fvs9/sJhUKZe+50OrFarVgslsxzkn5WTCYTZrMZk8mERqPJ/H369OnHcj6CiAoICAgICDwl3L59m7a2NpxOJ0qlEq1Wi06nQ6PRoNVq0Wg0qFQqtFoter0eo9GIyWTCYrFsamlRTUdT3W43Xq83IzChUAifz5eJrqYltbe3l+HhYU6dOsXVq1e5ceMGy8vLrKys/M6K6szsNFqdghLRYfZ99hGNklrMFuPvbJrC7du3M1HN69evc+bMGSYmJhgaGqK5uZmOjg7i8TjBYBCXy0UgECAYDGbE0+fz4Xa7M1HN9DOw8QtKWjTTUXW9Xo9Op0On06HX69FqtWi1WlQqFRqNBpvNxokTJx7L+QoiKiAgICAg8JSwvLyciXBtjGQZDIaMPOj1etRqNWq1OiOoGyVDr9djMBgyEbC0mKYjq2azORNFtdvtuFwufD5fJpKajrjZ7Xa8Xm9m2L+7u5uRkRHGx8e5cOEC165d4+bNmywvL2/5/FZXV7lx4wY3btxgbm6O5eVlVldvc/t2qq2urmba2toqKysrDxTh8fEx9AYVhUUH+HTfXmrFFWi0Kq5evXrP7VMiuLK+zzXW1tYy/a2u3mZlZSVzPEtLiywsLHDjxg3m5+e3fJ5ra2ssLi4yNzfHpUuXmJ2dZWRkhIGBAbq6uohEIpm8X5/PRyAQyLT0ULrdbr/r3qVb+pnQ6XSZ5+LOln4m0n9rNJrM85J+noxGI2azGY/Hw/Dw8JbP72EQRFRAQEBAQOApYXFxEY/Hk8njs1qtm6QjHQVNS8ZG2UiLhkajQa1WZyKnd7a0fKTbxuHajVFVq9WaySFMR+bC4TB+vx+Xy0UoFKK5uZnm5mZaWlro7e1lcnKS8+fPc+nSJebn51laWtqUmzo/P49SqcxEeZ1OB8FggHA4SDwepbW1mfb2Njo7O+jp6aKrq5Purs7137vWc2B76OxsZ2hokM6udlTqJsrKiygRHV7/eYS6+lp8Pi+9vT309fXR3d1NV1c3PT19dHf30tPdT2dnJx0dbXR0tNPe3kZ7exstLc3EYlHC4RBerweLxYxGk7qWG1fKSs9AT0vqpUuXOHfuHH19fXR2dpJIJGhpaSEcDmfSJdITz/x+Px6PB5fLhc1mw2azZb44pIfLNw6j3ymd97rndz4PG7+UbPxiko6Mpn+mv4yEQiEGBgYeyzMtiKiAgICAgMBTwsrKCtPT0wwODtLa2ordbkcmkyEWi9FoNNjt9k3NZrNtEsl0BDUtMBtFRqvV3jeSqlKpMtvr9fpN+acWiwW9Xo/NZsNsNmO1WnG5XJkhf4/Hg9/vJxwOZ/ITbTYbgUCAaDRKW1sbnZ2d9Pf34/P5KC0tpaKigoqKCiorK6iqKkcsrqZRUodCIUOlkqPVqjCZ9DidNvwBL9FoiEQ8QTyeoLW1hebmBO3trcRiIRoaaygRHUZcV0mjpJbyihLKykXo9Tra2lpoa2ujOdlMItFMLJYgHI4SDETxer3YHRYMBi0KZROyJglSaQP19bVUVZdTXi6irKyE0lIRlZWVNDQ0kEwm6enpoauri7a2Nvx+P16vF6fTmZH0dEQzHVVOf5mwWq0YDIZM7ub9IpxpuVSpVKhUqsz92hjRvFM6DQYDBoMhk6aR7iP9ZSL9rBiNRtRqNRKJBJVKRSgUore3l2PHjgmTlQQEBAQEBAQ2MzMzg1qtpqGhAb1ez8zMDMPDw8RiMQKBQEYIbTYber0el8uVec3hcGCz2TbJjl6vv0t+0hGzdKQynTeYziVUq9Wboqlp6UlH8zZGU9M/0zP8XS4XHo8Hr9eL0Wjk888/5+DBg4hEIkqKSxCJiikRHaG45DBFxYfW20GKig9SXHKIEtERysqLKSsvprSsmOrqCuobalFr5JjMOnS61Gz50rJCZE0NSGX1VFWX8fkXnyIWV2G3W9FoVEiljdTX11FbW0tVVSXl5RWUiAopLkn1k2oHKSz6gqLig5SIDiMqPYKo9AilpcWIRCI+++wzKioqsNlsmTzNdK7mxgizwWDI/L4xGpm+1mmZVKlUKJVK1Gp1Jh9445eE9BB6Ogq+sW0Uzo0VFdJ9bky7SOcAT0xMMDg4SGVlJQqFglAo9EQmdAkiKiAgICAg8JQyNzdHe3s709PTjIyMbHpvdXWVpaUlbty4wcWLF5mammJ0dJTu7m6i0WhGVNPRUIfDkZHT9Oz7tCClBUetVm9KA7hzYkt6OFiv16NUKjEajZuG/dNRuXT6QFqktFotUqmUjz76iJKSEkpLSzl8+DDFxYWUVxRTXHLoLgEUlR6hRHSYEtFhiksOUlSyn6KS/RQW76ewaD9FxQc4cHAfH+79gFpxJUqlHJVajkRax+Ej+/lw7/uUiA5TWHSAouKDFBYdzEhuUfEhSkQHKS07SFn5IUrLDiIqO0ix6AtEpQcpLT+EqPQgxSWfc+TIAcrKyti//3MOHDiASqW6a/LPxqHvjRHMjWKZjkanpTN97dJfDtJ/p+9Fer9p4U+3tGyaTCYcDgfhcJhkMkl3dzeTk5PMzMxkUiPuzN9dWloiHo9z9uxZBgcHn8gzLIiogICAgIDAU8rMzAwnT57k7NmzDA8Pb3liUGqizRILCwtcuXKFM2fOMD4+TkdHB5FIJDN0vDHK5nQ68fl8mEwmdDodJpMJg8GQyUFMC+XGKN3GKJ5SqczI6sZ8xrSkNjY28sUXXyCXy9FotNTXN1BbW01llYjyimJEpUcoKj7IkcIv1qOhKSktLSuktPwIJaVfUFL6OaKyA4hKD1FaVsihw/s5cPAzJNIGVColWp0KpVqWmUFfWlaIqPQIZeVFqf2UFa6L7SGKSw4gKjtEsegARwo/Q1R6iJLSgxQVf05p+WFqakupa6igsTGVFlFaWkZxcTFqtRqFQpERzXQ+7sZI8sYh8/S1Sr+els50ZDMdQbXZbDgcDtxu96aZ8OlqB/F4nO7ubk6fPs25c+e4fv06S0tL3Lp1a8v1YdPP0enTpzlx4sRjK2K/EUFEBQQEBAQEnkLW1taYmpri0qVLTE5OMjExwcWLFx/JvldXV5mbm+P06dOcOnWKkZER+vv76erqwmQyIZVKkUql6HS6TBTVYrFgt9szZYNMJlNGTDcOP6ejgRuHohUKBTKZjMLCQvbt28eRI0dS6QYGLWaLHr1BhUotQ65oRCqrQ1xXSU1tOZVVIsrKixCVFlJccoDiki8oER2kRHQoEy0tqyhGqWpCr9disRgxmDTU1JZTXJKS1SOFX3Ck8IsNw/0pwS2vKKauvgqJtJb6hmokUjFN8kaUKhkmsxarzYBGK6eqqpzPP/+cffv2UVNTkzmfjfmbGycPbZwklM63NZvNmclnG1Mm5HI5NTU11NTUEAqF6OvrY2BggPHxcaanp7l48SKLi4uP5J6vra1x7NgxLly4wMzMDFNTU1y5cuWR7PvLEERUQEBAQEDgKWR1dZWTJ08yMjLC2NgYY2NjzMzMPPZ+JyYmkMvlNDQ0oNVqOXbsGIODgyQSCRKJRCbfU6FQZIb77xziTw/vbxyaV6lUSCQSqqqq2L9/P3v37uWLL/av53fWY7UZcLosWO1GTGYdBqMarU6BWtOEUiVDrmhAIhVTV19NdU0ZFZUllJYVUVZeTJNcgtVqwuNxYbEaqK4pp7QsNexfXVO2Lpp1yJrqUSglqNQyDEYNRqMOk0mPzWbGZjPjcNrQ6TXUiqspERXyyScfs3fvXg4dOkRDQ0NGQDcOq6dbOmczPevd4XBkcm8tFgs+n4/29na6uroYHR2lr6+P6upqJBIJVqv1kQnn/bh16xanTp1ibGyMgYEBjh8/zrVr1x5rnyCIqICAgICAwFPL8vIy4XCY0tJSBgcHH6pm51fl2rVrmbXse3p6Nr23trbGwsICFy9ezKxl3tPTQ01NDaWlpZSWlmaELT3cnJ7hv3EoX6lUUl9fT2lpKZ9/sY9P933MZ5/9mooKEWqNHIvVgM1uxmI1YrboM81qM2Iy6zGadKnJSnoVcoUEjVaB2+MgEPBhd1iQK6WoNQo0WsX6tnqMJi0mkw6L1YDFasRkSpWxsttTwtjQ0EBxcTH79+/no48+5tChQ9TW1iKVyjKRznRUeOM5qVQqpFIpYrEYkUiESCTCYDBw/PjxTFrF9evX7yqwv7S0RGtrK+fOnWNoaOix39f0vXM4HBw5coSTJ08+kedJEFEBAQEBAYGnlNXVVcLhMI2NjfT29j6RPmdnZzl+/Djnz59nYGDggSsqLS4uotVqkUgkHDx4kCNHjlBUVERraytDQ0N0dHSQTCaJRCKbJvOkxFSDXq+loaGOiooyvjiwn/3793Hw4BdUV1diMOiw262YzUbMZgN6vQajUY/JZMBg0GI2GdEbNOgNarw+Jx6vA5fLjsGgw2IxYTIZMttrNCq0OnXmdZPJiFqtpbCwmIMHD/PJJ/sQicppaJCgUKgwGi3o9UZ0Oj0ymQylUonP5yMej9PW1sbg4CCTk5MYjUaKioo4fPgwJSUlyGQy2tvbH3idr169yuDgIDMzM/T29j6RfM2VlRX0ej319fVMTk4+9v5AEFEBAQEBAYGnljNnztDd3Z1ZM/5+qwU9KlZXVzl+/Djnzp1jenqao0ePcuHChQd+7vLly3i9XpqampBIJGi1Wubm5jZtc/v2ba5fv8758+c5derU+pD/AC0tSTweF2azEaVSTm1tNbW11Rw48DnFxYWUlBQik0kyaQBWa6q2qVarXRdNHTa7Ba1OiUIpxem0o9NpMBh0mM1GjEY9Op0Gi8WIy+XAaNRRXy+moqKCQ4cOU1hYRFVVNXK5ApVKjdVqJRKJrq8kNcrExCTT09NcvnyZpaWlu859bGwMuVyOTCZDrVbT39+/pUjjiRMnMrmaU1NTnD17dus36iuwtrbGyMgIfr+fWCxGV1eXUL5JQEBAQEBA4N6srKxw9OhRBgcHaW5upquri+PHjz+WvhYXF5mfn+f8+fP09PQwMjKSKQd05syZLe3jxo0bVFVVIZVKcTgc3L59+6GOYW7uJmfPnmF6eppjx47S2dlBMplAp9MiEok4cOAwopJytFodDocLn8+L3WFFp9NgtZpQqmRUVpViNhvR6bTY7TZcLid2uw2n04FSqeDIkcOIRCXU1Ylxu900Nzdz9OgoExMTnD17lqtXrz70cZ8/f56amhoaGhqIxWJb+sza2honTpxgenqa1tZWTp06xcDAAHNzc8zPz981jP8oWFxcpK2tjfb2djo7O5mYmNjSl4yviyCiAgICAgICTyErKyuMjo4yNDyUEYg7a4l+XRYXF4lGo5hMJlwuFw6HA5lMxscff8yBAwfo6+t74ND8RlwuFyqVCrPZ/MiP88yZs4yNjTM8PMLIyChtbW24XE4sFjNms4EacQXFJYcyNVOtVhuhUIijR49y/PhxhoeHOXHiBNeuXXukuZGXL1+murqaxsZGxsfHt/y5hYUFtFothw8fprCwELVajcPhwG63YzKZGB4e3nJZpq1w8+ZN2tvbaW9vp6OjI7Mc6+NGEFEBAQEBAYGnkLW1NXq6u0nE4thtdsxGE+fOnXukfQwMDNDb28u1a9eYm5tjcXGRixcvUl5Zwb7P95NIJh9qf5OTkzgcDvr7+x/pcd6PwcFBmpqkmEx6TGYder0Gm82GTqejqamJ+fn5x34Mt27dwul0YjKZuHnz5pY/d/v2bWpqaygrKyMcDrG8vMzc3BwLCwucO3eORCLxSCOWt2/fprOrC7vDSTAUJhKJCrPmBQQEBAQEBO7PqalTjI+MkoxGcdqsLD3iEj+dnZ1cunRp02tHx49RIa1hn+ggJreN6zdubHl/V65cwev1bnk4/+ty5swZ6upSS3eqlErEYjEymYzy8nJsNtsTOQaA9vZ2AoHAQ33m+OQEUrmUI4WHMJsNd5VvOjZ2jMkTj3ZC0fGJSewuH91d/RwdHnssKQB3IoiogICAgIDAU8rS4iI93V10tLXQ3tb80PmLD6Krq2vT8OzS0hKJZAypVsahiiO4gy6mp6e2vL8LFy7g8Xg4ffr0Iz3OL2NycpKDBw/yzjvv8NZbb3H48GFEItETmYiTprOzk0AgsOU0hturq8RaE2iNOmpqqvB5XBwdGd60zejoCBMTE4/0OK9evYrP6aWvpYvzM2cf6dD//RBEVEBAQEBA4Cnm5MkJ+vs6OXni0UoJQHd39yYRnZ+bIxkLoTOoEEuq8HhsjB3del7quXPncLvdT1RET506RU1NDSKRKFP7s66u7olIVpquri5CodCWRfTW8i08IT9yrYpGmYRgJMTQ0Oa134+OjjI58WgjordXb9PR1kJPexsXn8BEJRBEVEBAQEBA4Knm8tnTXJwa58qlRy8O3d3dm8oGraws09qcQKlqpK6xErmikbNnti6VZ86cwe12P5EVoNJMT09TV1dHY2MjdrudmpoaGhsbn8iwc5qOjo6Hioiurq4SSyaok0oQSxuRqhScmpnetM3o6OhjqfV5bLiX6bFBlhYef/4sCCIqICAgICDwVDI1NkZPKEJYKsdTVkZIp2WovZ2FRzgB504RBTh+fByH24raqMRqMz7UhJ/Tp0/j9XqfqIieOHGCsrIy1Go1Ho+HyspK6urqnqiItrW14fP5Hip14ujICHqdDovVitVhZ/4OMRwZTdUwfVScmTpFVyCEpagIX3k5LRYrfckkNx5zbVpBRAUEBAQEBJ4yLp85S83bP6d69+sc+JcsPvjb/8mnz23j4O49uOXyR9ZPT0/PXSJ6+dJlbA4rJquBaDQMDzHEffr0aTweD7Ozs4/sGB/E+Pg45eXlGAwGgsEgYrGY6urqJ5oj2tbWhsfjeSj5vXLpEhadnoDLTXtzy12fHRkaYWL80dSNvXn1GoXvfMCBXS/wwT/9kJ/+/T/wWV4+B195FcsjfJ7uhSCiAgICAgICTxlT48foDXhos5iI61T4ZA04pWK8GglOveKRzZ5vb2+/5wz3cCyM0+didHT0ofb324iIjoyMUFxcjMlkIhQKUVtbS0lJyT1XQXpcpEX0YSeTNSdihH1uTt/jeh0dHmXiIeqSfhnTx4/jlavwqGQ4VQ24VRIiRg2tHgcht4Obc1svO/WwCCIqICAgICDwlNHR3Uprd5xA3IMv5sQXc+IMmHAFTYQTHiYmHo2gJJPJe4roYF8PXR3NnDj5cEPDZ86ceeIiOjAwwKFDhzCbzRkRPXDgwF3lkB4nra2teL3ehxbRwf5O+tvj3Lh+dz3PoaFhxo8/mvvc0ZakIxHG57PgDViJRz3EQm4SET/dXa1Mz2y9MsLDIoiogICAgIDAU8SFC+dJRIO0tkQJhFwEI25CMQ8evxmnS0887qOjo/2hVjy6Hy0tLZtE9NzMNMc6OzCVlyL/fD9Rg57JwUGWFrcWXfxtTFYaHh6mqKgIi8VCOBxGLBZz+PDhJxoRbW1tfaiI6IUzpxnpbENfVYZs/6c0u1yM9w8wt6Fm68DwMOMTX39o/vKVy/j8TvwBBy6HiYjPTUvQT9znIebz0NGapK+/+7Hl1AoiKiAgICAg8BQxPDRAX1crEb+bZNhPPOghFnAR8dkIeMwEfXai0TCXL1/+2n11dHRkRPTSuXMceP01juTv5Bd/+3f89L/9d/b96Md8sj2LoEG/pf2dPj2Ly+V8oiI6Pj5ORUUFFouFaDSKWCymoqLiiYpoS0sLbrd7SzJ3a2GRsnfe5rNtz/HBP/xP3v6/f8Cvf/Q8+7J3YqmXZLYbGB5g7BEMzQ8N9dPWFsfrs+MPuAlHgkRDAeLBALFwkEQyQiwR5vyFx7PcpyCiAgICAgICTwk3rl+noy1GW3OYeNhLS8xPc8RLIuwmFnQQ8lkI+R20tsbpH+z72v11dXdw9mxKREcHerFKxZiqy9CXFaEXFaIuOYypthyvQcWtpQcPdc/OzuD1OZmZnX7gto+KiYkJamtrMZvN+P1+6urqEIvFT3SyUnNz85YnK52cOI61UYyhohxDRRnGinL0ZeWYxWJsCgXL68c9PDzI8fWh+a9aE3V+YZ54PEw8EcLlthAKeQmFfERCPuLhAPFokEQsSE9PO8PDA1+pjwchiKiAgICAgMBTwtTJcbraozTHfYSDdhJRD/GIm1jYRSToIOS34fdZiUR8RGMBbtx4+LXCp6ZOMDV1AoCOzhbOnUuJaCTowuMyYDEpMRkV6HUy9DoZRn0THqeBE5NjD9z37Ow0Pv+TF1GpVIrRaMTv9yOVSmlsbPwtiKiblZUHD83H4gE8bisGvQqjQYXFpMVkVGM163DajYwdSy0gMDo6zInJCdbW1hgaGuLGQyy1mubk1CTxRAh/wEUg6MbndRANeYmGvMTCPuIRP7Gwj+ZYkI7WODdvXn/oPh6EIKICAgICAgJPAcvLy/R2t9DeHCQWdhELu4iGnESCDsIBOyG/jZDfhs9nwe930dae4PjEg+XwTkZGhjLRr2QyxoWLF7h86QI2kwqrSYnVpMRiVGC3qNFrJCibarGblXS0xR6Yl/rbENGpqSlkMhl6vR63241cLkcikfwWJis9OCJ68eJ5XG4TVrMWnboJs0GNzazDatJiMWrwe+yEg14Ajo6OMDFxnLW1NRKJxEOnYty6dYvWtgSxeACny0Iw5CES9hEJeu5q0ZCXzrYEJ088mnJRGxFEVEBAQEBA4Cng0sXztCYDJGNegj5rKvrpMWcENOC1EPCYCQUcOBxmgiEP4UiAldsPN8nk2LFRjq5H3Tq72rh48QKd7Uk8TgNOmzYjok6bFptZhVEnw2HVYLdquHjx3Jfu+7chorOzs6hUKqxWK1arFbVajU6neySTubbKVkW0b6CTQNCGSa/CqFNiM+tw2oxYTVocVgNOmxGn1cDFC+c4Pj7GyROpqgVfRURnZ6cJBD04nCacLgsut5VgwEXI/5sWDrgJ+V0kogF6Olvo7WpjeWX5K1+HeyGIqICAgICAwFPAQH8P3R1RIkEHQZ81Mxyfjob6PWZ8bhMuhwGn04zVZsAfcDEzc+qh+hkeHmRoOLWueWdnGyOjg9itWuwWFSZ9E3aLGqdNi8OqwWpSYtBKsZlVREIOhoZ6vnTfT1JEb9++zc2bNxkZGUGtVqNUKtFoNCgUCuRyORcvXmRhYeGxHwdAa2vLA0V0aWmRSMyL12fBbFBjMWpw2oy4HWZsZh02sw6DVoHDqqe/t4vxsWOcWBfReDz+0CLa3tGCP+DCZjdisxtxuiz4vHb8HjtBnzMjouGAm6DPSTIWpKMlxpXLl77WtbgTQUQFBAQEBAR+x7l67RotzXFaEv5NAhoO2An6rAS8FrwuI26HHqdDj9NpxuE04w84STbHH6qv0dEhBtYnOvX2dhKLBzDoZGiU9ViMisywvMOqwWZW4bBqMOlk2CwqPB4L8/Nz9933zMwpPF47s09ARDs6Onj77bd55ZVXyM7OJj8/n/z8fPLy8sjKyuLVV1/lk08+eSIy2tbWhsvlZOVLoolTp07g8VowmZUZ8XTajDhtRhxWAxajBpNehd2ix+200NHWwskTk6ytrRGLxR5KRK9fu47X68TpsmB3mHA4zThdFjwuK373b0Q06HMS9DkJeB1Egh56u1oZ7O95pNFkQUQFBAQEBAR+xzl69ChtrUlCfhtBnwW/x4zXZcTjNOBxGlICuh6ltJhVWK169AYVVpses0XHuXNfPmS+keGRQYaGUjmizS1x3B4ramUDeo0Eo06G1aRMDcVb1NjMqpScGuSY9E14PGaOjd1/taWZmVO4PbYnIqItLS3k5uby3HPP8Q//8A8888wzPPvss/zwhz/kRz/6Ebt37+aNN95gfn7+wTv7mrS2tuJyOe4roqurqzS3xPH6rBiMcixGDXaLPiOidos+I6IGrQKNSorNYuD06dRSqdFolEuXth6p7Ovrxe2xYzRp0RtUGE0azBYdDpsRj9OCz23D57bhdVkJ+pyZ32NhH/FogCtXvn5psDSCiAoICAgICPyO09fXRywawu0w4LLrMtJpt6g3CaHZIMdkVKBWy9DqFMgVjRiMaiYntz7JZGR0OJMjmkhGMZrUqJUNaFUNGRG9s1+Tvik1RG/TEon671uj80mK6EO3XAcAACAASURBVMzMDG+++Savvvoqubm5vPjii7zyyivs3r2b1157jXfeeYeqqqrHfhyQkuJURPTeQ/MXL57HZjOg1cnQG5qwmrTYzDocVgMOqwGbWYdJr0KvkaNVydCpZFjNemZmUtcxGo1y/vzW63y2tCSx2c2o1DLUmia0OgVavRKTUZPpNy3BbocZt8OMc11SI0EP58+dfSTXBQQRFRAQEBAQ+J1nZGSEeCyM267HZddtktH05KG0DOq0UvR6FRqtHKVKikotY/LExJb7Gh4eZGRkCAB/wI3eoKRJWoNGUXdfETXqZOjUjej1TThdpowg3cmTFNGzZ8/y9ttv86Mf/YhnnnmGX/7yl3z88Ufs37+f119/nb/+679m7969j/04ICWiTqfjviLa0d6Ky21BZ2hCb2jCYtRgNWmxW/TYLfqMiGpVMlTyRlRNDZgMGo4eTUWfI5HIQ0VEm5uTGE06lGoZGq0cvUGViowa1Jn81I1C6rKb8bqseJwW/B5Hprbso0AQUQEBAQEBgd9x+vv7iUVDONcldKOM2sypskpmgxyTPlXb02TSojeqUSglGIxqTp46seW+RkaHmJgc5/z5s6jUTShVUpqktajk4sxkpXRzWDVYjAoMWiladQNyhRib3UBbe8s9950SUesTEdFz587xd3/3d/ze7/0ef/qnf8pf/dVf8Z3vfIfvfve7fPvb3+YP/uAP2Ldv32M/DoCWlub7iujly5cxmfTo9EpUmkZ0ehkWQ0oE0xKajpDq1E0oZPU0SWoxG7X4fF4WFhaIx+MPKaIJDAYNSpUUrU6BwahGb1BjMv5GRO0WPW6HGY/Tgstuwu0w43PbCHgdnDlz+pFdG0FEBQQEBAQEfsfp7eshFgvgduhxO1JR0Y15mumoqNnQhEHfhN6gQqdXotXJ0WjljI0f23JfR48NMzE5TmtbM0qVlNq6Cupqy2iSVKHXSDDpmzAb5JkorE7diEouRtlUi1xag1YlQ6mQcOnSxbv2PTM7jdfnYnr64WbyfxUuX77M7t27+Q//+3/gB9//Pi/seYH33n2Pjz/ey7PPPsO3/vgPqRXXPPbjAGjvbMfust9TRPv7e3C7rchkYlTqBlSKOnSqJow6JWaDOlND1KhTolFKaayroqZSRJO0Hqm0gYmJ47Q0J7l48cKWjyeZjGE0a1AoG9Fo5RiMSvRGBSajEotRhdWkxm7R4rIb8DhNuB0GnDY9XpeZcMCZWeTgUSCIqICAgICAwO84fX3dhCOeuyYnZSYLpfND9U0YDXJ0eiVqrRy1RoZa3cTExNbXJD8+Oc7k5HF8PheNklrKyouorixGUleGRlmPTt2IQSvNDMcrm2qRNVbSJKlCVldFXUUpkoaae5aNOn/hAm6P+6HyGb8q169dp6i4iPfefZePP/qIoM9PT1cnk5NjaDQKsnO2odaqMtsvLi5y4eKFLS3DeT+Wl5fv+vzq6iq+gBe723bPzzQ3R5BIqhGLS2moL0PWUImyqQGNUopBq8jUFFUrJCibGqipFFFadBBxTQX19VWMHh2mu7uTK1eubPk4Y/EwRpMKpaoRra4Jg0mOwSTHZJRjMcixmpSZighOmzbz5cft0BPwWjl7VoiICggICAgIfGPo6+8hHHbjtGkzQuCy67Bb1HeLqL4JjVaOSi1DoZSgUEoY32JEdH5+nlg8TCwWRqGU0SgRU1xykMryQiT15RkR1WskqXxUdSNqRR0KWQ1Nkioaa8ppqC6nsb6aeCzC4NAAg8ODDI0MMTg8RGtbGxarhVgixvDoMEMjQ4+sDQyl+hkaHmJ4eIi2tlaqqipQKZtQqeR0d3bQ3tJMS0sMf8CNz+8ilogwOjpMOBbm0y8+4Sc/+wlHREcorSqlqLSIkrLiBzZRRQllVaWIKko4VHSQw8WHqKypQFReQlFpEYWiIxwsOkBtYw1NShmBkB9/wEcg6CMcCWIwqmhsrKK+vpyG+jIUTWIUsnrUCgk6dRN6jRy9Rr5JREVFB6kXV1JbW47TZcPhtDA01L/l5ykaDWEwKlGqGtFoZeiNTeiNTRgNTZj1TViMikwucFpGHVYNLrsWn8fM2bOzX/VRvgtBRJ8yLly4wMzMDLdvP3i92m8Cq6urzM7OPtZv1ysrK0xNTXH16tXH1sfTxo0bN5iamnqiazULCHyTSYmoC4dVnZHR+4qoQY5Wq0CpkiJXNNIkb2BsbGsi2tfXy4d7P+Dd997m5+/+Gw2NtVRUFlNacgBJXTlqRR1aVcM9RVTWWImktoK6yjLKSwt5++03KNidy+6Xd1Pwwk4KXtjJW//2E2rFNbz86kvsfLFgUyt4IZ/8PXlfueXszCF/Vy4Fu3LZuTuPN996lRpxJRUVJej1Kvp7uxga6GFkZIDWtgTxRJgmhYSCXbnk7MwmZ3cOWTt3kPdCHnkv5lHwQv5dx3ivtuvlnex5ZTd7XtnF7pdTbeeLBZnXtudu44O97yOqLCF/Tx6vvPYiL7/6Ai++vItXX9vD5198TH19BWJxKVJJJXJpDcqmBtQKCVqVDK1KhkYpzYhodUUJoqKDiGvKqawo4aWXd/Hxr3/B4cNfcOvWvasV3Ek4EkCnV6BQNqDRStEZZOgMMgx6GcYHiKjfY+bMmZmv8zhvQhDRp4zOzk5CoZAgAOusrKzgcDhIJBKPrY/5+XlMJhODg4OPrY+njYmJCdxu90MNBQkICHx1+vq7N0VE7xyWv1NE9XoVak0TCqXkoUS0ra2VX/zyXX7yr6/z03feoq6+isoqEeWlh2isK0MlF2eioummVTWgbKpF2liBVFxJbbmIenElb771MtuznyNvdx65u/LIytvBa2++TmVVFbv27GRHXhbZBTsybUdBFll5279S25GfRVbeNnILtpNbkMVz235Ewc4d/OznP+Hdn/8r//qTV/lo7/t8/tnHHDlygKLiQxSLjvCLX73HjpxtPL/jObIKstiev51ns5/l+bxt6/vcWt93tvTrOTuzeTbrx7z/4XuU15Tx4+3PkFeQTV5BNgW7ctie9Qyf7d9LQ0MlDQ3lyGU1SOrLUckb0Sil6NRN6NRNaJRSVPJGFLJ6qitKKCk8QG11GZUVInbtyWXvRx/wyad7WVjYWk3UYNCHRtuEXFGPWiNBq5ei1UvR62QYdbJMDnB6eD4dgfc49QR9ViEi+k2mt7eXeDwuiOg6t2/fxuVy0dra+tj6mJ+fx2q10t+/9WGPf+9MTk4SDocFERUQeEL09nURDrtw2rSZ6NTmSUryjIjqdTJ0OiUqTRNyRSOypvotT1bq6urkF798jzfefJm3fvIqdfVViEoPUyY6SH2tCGVT7T1FVCUXI5NU0lBTRl1lGTVVpbz2+ovkFuwgd1cu+XsKyMrbwetvvUFDQwO79+wipyCb3F05mZazM/srt+yCHWTlbyO34Hmy854jt+B5nnv+n/nHf/p/ycl9jpdeymf3rh3k5TxHTs42nnv+X3j/g5/x5k9eIzt3O1m529iev50dO3eQvSubrILNkvxl7V7Hkr8nL/P+czue5YO971NSUcyO/CzyCrLJ35lDfkE2efnb2ffZh9TXV1BXl8oRlctqUCskaJSyTSKqbGpALq3LiKi4ppxS0RHy83fwy1+9y2f7f83S0uKW7nMw5E+JqLzuLhE1fYmIuh16/F4L584JOaLfWFpbWzGbzV8rmfrfGwqFAo/H/dj2v7y8TE1NDfH4wy2T9++Zo0eP0tjYyNzc/ZfyExAQeHR093YQCDg2lU5Kt3QdT5O+CaNOhlYjQa1ORUNlTfVIZXWMjR3dUj8dHe28//7PePOtV/jJv75GfUM1pWWFlBR9QV11CQpZTWZ4Pi2iGmV9KiLaUIFUXIG4QkRVRQlv/eRVsvO2k7MzZ0NE9A1qamrY/cIucnfmkLc7d1PbKKZf1u4pozu3r0dEt5O3M4v8gu18649/nz/5kz8gK+sZfvzMP5Kd9WPy8nbw7e98ix/+09/z+puvkJu/g9yd2eTsyiF7V3am3auPex3Lneewse18sYBtOc9nhuazC3ZQsCuX/J055BXsIC9/O5/u+xV1deXU1JTQUF9Gk6QalbwRtUK6aWg+VbZJTE2liKLDn1NbXUZFeTE7d+Xw4d73+XTfRywubk1EQ+EAGq0MWZMYlToloqmh+btzRO0WdebLj9Omxec2CUPz32RKSkr48Y+fESKiG/jhP/0j777788e2//n5ef7yL/+S/fv3P7Y+njb8fj/f//73mZjYepFsAQGBr053b+eWRNSkk6FVS1CpZJlo6FcV0bd+8ir1DdWISo9QUvQ54uriu0RUq2pAo6xHIatB2lCBpLac2nIRVeUPL6L5e1J5mVtp9xLC7IIdZOduJzt3O/k7s3nxpV18/wd/w//2v/4vfOfb3+J7f/Gn/MV3v8P3/uLP+MM/+n3+8Ft/wLasZ9m9pyAlortzNrV79XGvY8zfk3dfES14IX9LIiquK6empnhdRKvuKaLKpgaaJGKqK0p+I6IVaRF97yuLqFLdmImI3k9E06XCnDaNIKLfdEpLS3nzzTe5cGHz5Jy1tbX7tge9v5Xttvre/Y4J0u/9ZvstH/fqGmtrkN596vfUNlevXuWll15k795fsbi4yOrq6gP3t9XrkW4zMzPk5uZSUVHB8vIyq6ur99zX/fZ/5zHdfW3uvmZ3sun1h7iHW3k+vqylz3XjPm7fvo3ZbOa1116jr6/vrmMVEBB49PSsi6jNrLqrbRJRvQyNuhG5/DcS+rAi+t777/DGmy/z5luvUFdfRYnoMMWF+6mtKkIurc7kiaYlVK2oQy6tRlJfTmNNGTVlJVSUFfHmW6+wI3cb2QXZWxbRrUwO2vliwT2lL2dnLvm78ijYlU9+QS65edn8p//05/y3//p/UVx0GFHxEUqLC6muKuOZH/8z+z77mH37f82OnG3sfKGA3N055O7JzbT7ieVWJ1k9WESzyc3bzief/oJacRnV1UXU15Uia6zK5IjeKaLShhoqSgs5cvAzamvKKS8vomBnNr/68F0++XTvQ4moWiNFKqtFoWpAo5Og0Ukw6GX3FNF0vVqHRY3XZRRE9JvK6uoqra2ttLe1odNoiMdiJBMJkvEEiXiCaCRCIhanJdlMPBajtbmFZCJONBomHovQ0pykpSVJczJBLPNagkQ8RiIRo6UlSSQcJB6Lpl6LR2ltaSYeixIOB2lOxknE4iTiCTrbO4hFo0TCERLxOMlEguZEkkQ8TjQcoTmZoKU5QXMyQWtrM/FYhFg0QjIRI5mIEY9HSSbjxKJhopEQyWSceCxKLBqhtSVJNBomEgnRnIzTnEyQTCRJJpJEwzEioQjNyWaaE0msFhMup4NYLIzLaSMej9DS3ExLSwvNzc2ZlkgkiMfjm34mk0mSyeSm7e7ePondZsXjceJ02PG4XTQnU9estaWZRDxGLBqmuTlBMhEnFk1d52gkTCwaIRGPpt5PJmhOxomEQ6nziSdIJlL3LRaNEotGaWluIRlP0JJsprW5hVgkQjQSIZlIpM6puZnmZJJYJEo8mrr3zclmkunrHgmTTMRT9ykeo72thWg0TDQSJpGIEYtGaGttJR6NEY1EiEdjtKxfx47WdhKxOOFgiGQ8TiIeJ5GIrZ9TmHgsSsv6OUbCQQx6LaMjQ4yPj/22/1kICHwjSImoHatJeVe7l4jKZPVIpGIkUvFDi+i77/2U199Iiai4rpJi0WGKjnxGbWUhTZIqlE21qBV1GQlVycXIpdU01pWlRLS0mIrSIt5482Wycp5/KBHdakT0XuKXuyuf/F0F7Ny9k/yCfHJysvnVr36JxWwmFomg12rQKBVYrQa8XgfTsycpLDnMMz/+Zwp255G3Jy81Y/6FPPJeyL1nHw9zfFsT0W38+pNfUFNbSlVVIXViEdKGynuKqEJWj6S+mrKSwxw+sI/amnLKyorIL9jBL371cz759EMWFxe2dJ/D4QAqtQSJtAaFsgG1thG1tvGeImozq7BbVNjMSuxmFR6nQRDRbzLd3d20tbahUWkxGUx4XV4sJis2ix2/x4/b6cbj8uKwOnDa7XjcThx2K3abhYDfi8tpx2Y143E78XhcOOxWfF43VosJh8NKwO/F7XLgcTvxed3YbRY8Hic2qwWXy47f68NuteOwOfG4PLgcbuxWBwFfELvVgd3qwO304HG78HqceD2u9f4cuJx2nA4bHnfqdZNRj8/nwWazZI7DYjHisFtx2K24XA7cLgdejwurxYTH7cJpd2A2GfG4XZhNRhob6jAatHjcdtSqJpwOCz6fD6/Xt/7Te9/m8/nuah6PJ9NcLhc2m43GhnosZiNWiwmNRonVasJqMWExG7FZzQT8Xuw2C25X6vxsVjM+rxub1Zy5lg67FZczdT9sVjMelxu30525Xk67C5fDTcAXwGF14HK48Lp9uBxu3E4PoUAIi8mK0+7C5/FlPufz+HFYU9fJ73NjNhnw+1L3zeVMXWunw4bX41x/3YrT7sTn8WO3pfbhsDmxWWx43V48Lu/6/fThctrwely4nHbs6/fI63Gh1aiQN0np6+vh9OlH95+RgIDA/enu7tgkohsnKJkNcozrs52NunURbapFKhMjlaVk9Nix0S3109HVwc/f+ymvvf4ir73+IjW15RQXH6Lo8H6qKwppklSjkIlRydMR0QZU8nqaJNU01lVQV11KVVkRFWVFvP7my2zPeZ7sO4bma8Vidr2wK5NzuVFEt9rujFTm785l1858dhXkkV+QR25ePq++8jrdnX1cv3Sdwe5Bgt4Aeo0Ol9tN/2A/ly5fRK6Ukp2fRXZBVmpfe/LI21NA7p6d5O8p2NKxfJmI5u/JezgRrS1B2lBxl4imSzc11lVlRFRcU05ZaSF5BVn8au97/PqTD1leXt7SfQ6F/BkRlSvrMyKq10kx6eSYDakVlmxmNVaTCqtJlfnb4zRx5hH+3y+I6FPEwsICVquVluYW2lraMOqN+H1+1Eo1XrePns4evG4vbqcbm8WGUq4gFg3T09WOzWJKSZ/VjNVioqOthXg0jMmgJxQMoJTLcDkddHW04VqXxWDAh0opJx6N0NvdgUGnxe/1YdKbMOqNtLW00d7SjsloIuAPopQr8bg89HT14LTbsK8Lr6JJRjwaob+3C6vZSDgURKNSYjLq6WxvpSUZR6NSEvB5UchlWC1mujvb8bjsGQFVymWEg356ujqwW0w47FbMRj3imioqyopprKvBYtITCQeJRqNEozFisRjRaJRYLEY8Hicej9/1e2rb37RIJEIkEsn8HgyGqK8TUyYqoq0lgVGvxWjQ4XTYUcplBHxeers7sJqNBAN+NGolVrOJ1uYEoYAXk0GHz+vBoNPg93np6mjDajbhdDiwmq3otXpaki30dvdiNpqJRmLotXosZgud7Z2Eg2FsZisBf3D9Pnvp7uwm4PPj96Zk0mw0kYhF6e5sx6jXEgr60WpUmE1GujraiEdCGHRafF43aqWCgC9Ad0cXDqt9XWrtqJVqEvEk3R3dWM02IuFU9MBmNdPR1kI46MflsBMOpZ6VclExFqOejva2TcP3AgICj4eu7nZ8PltGQtMTk9IrHBm0UvQaCXqNBK1GglxRi7SpmkZpNQ2N1VsW0db2Vn72/ju8/NoLvPTKLiorSigpPEjR4c+prihG1libqXGZntGtVkiQS8WZpScrSgupqCjhtTdfYlvu82TvyiF7Vy7bcrN49c03qJc0snPPzkx5owdN+NlKK9iVw4s7s3lxVy47d+WxPTuHV195C0WjEpvaQkNpDSX7D/LrD35JcVEZFVViHBYbhUcOkJW3jaydqWPJ25lH7q5d7NjzAjm7d37l49koy+lZ86LKEnbkZ5G/IUc0J3cbH//6A2pqRFRWFiKuLUFaX7GpoP1GEZXUV1MuOpIZmi8rKyI793nefe9t9n229RzRQNCLSi2hobEKqawWuVKMStOATivDqFVg1Ckx6VWYDepNPy1GDS6HmdOzgoh+I7l27Romkwmf28OJ8XEWFxZYmJ8nGY1y49p1zszOMjs9k8prnD5Ff3c3q7dvMzrYz+X1NWh7O9uZPD7G/M3rTI4fY3Fxkfn5ORKRIDdv3ODqpYucmZ1hdXWV0zPT9Ha2s7S4wNjoENeupQq6jwwOMjE2xo1r15gYG2dpaYn5uTmG+vq4fvUaZ2ZnmJqcZGVlhRMTxxkZ6GNxYYGRgV6urK89fGx4kBPHx7h5/Rpjo8PMz81xa2mJtkSMq1cuc2Z2mvGjoywv3+L8uTO0JWMsLsxz6uRxLl1M5ceOHx0mHPBSfPgAaoWMq5cvP5brfnx8DFHhIRKRIKdOTrJ6+zaz06dIRIKsLC8zO3WCa+tljDpak0yMjzF34zrjR0dYXFjg2tUr9HS0Mj93k6nJ40yfmgJg8vhxxo8e5eaNm4wODjJ38yYAfd3dnD09y5VLFzl+7BhLS0tcv3ad9mSSxcVFpiZPZP4TmDx+nL7ublaWbzFzcoKbN24A0NXewsz0KRbm5zg5McbiwgJzN2/Sloxz4/oNzkxPc/niRdbW1pianGS4v5/lW0tMTU6ytJQqiHx0aIDTM9Ncv3aFsaMjrKyscO3KFfq7O7CZDBw5sJ+OthZu3xYqOAgIPG7SInpnJHSjkOo1ktQsdnUjTXIxDdJyxPVlNDRWb2lofvb0LB98+Aveef+nvPT6C7zy6h5qqsoQFaVFtIQmiTiz/GQ6WqeSN9IkEdMgrqSmUkR5aSHlFcW8+saLPJ/9HFk7s8laF9FX3nidusYGCnYXkLVeR3TjbPSvLH67c8jN38aO/G1s35XNcwXZPLdjO//5z77L9/7PP+K//B+/zw/+4x/zt3/2Hf7mu3/Bn//Rn/CX3/4Of/+D/4fc/FTJpuyCbPLyc8nZuZOs3bvI2Z3/teQ4fV7P7XiW9z98j5KKYrLytpOXjobmZ62L6PtU14iorDyCuLYESV05ssZaVPLGu8o3bYyIVleWUlx8kOyc5/ngFz/jpZd3oVIr7jnP4E78AQ9yRT3iunIaJdXI5DXIlWK0GhlGnfIuEU0tM5r622U3CSL6Taanpxe9Ro3HYeXWrVvcXlmhq7WZ8+fOEfA46e3uBODcmTP0d3dy/uxZbGY9M9OpNX972ls5PjZKd2c7LpuZleVllhYXSUaD3Lh+jXDAR1d7qibnzKkpOlqTXLxwAbNew9mzZwDo6+pk/NhRRoYG8TkdLC0tcuvWLXo727l4/jzRUID2liQAp05O0tPRyrkzZzBqVcxOT63vo51jo0MM9PXgtBpZWJhnjTU6WhKcO3uGaNBHMh4B4PLFC/R0tHL50kU8DjOT6/Xwhgd66e1sx2rU05p8fKWVFubnUUob0KuaGB1OFbU/MztNe3Oc8+fOYtFruLC+slNfVzunpk4wMjRA2O9hbW2Nhbk52pvjXLp4AbfDyujQAAATY2OMDPYzfWoKs07NpXVJ72pvZXZ6ms72VkI+L2urqywuLJCMhrl25Qo+t4uerg4AZqdP0dPRzqmTJzFqlVy5fGl9Hy1Mn5qir6eLoM+dOY9kNMSVy5eJBHwcGx1O3aPJSXra25iZnsJm0nNxfSLcUH8Ps9NT9HZ34nc7uX17levXrnJseIDxoyNYjVquXRXqiAoIPAlSImrdJKEbh+XTqxxplPUoFWIaJZU0SCqob6ygrr6S0dGRB/bR29dLVt4O3vngp7z46m5efmU3tTXllBQe4MjBz6gqL0baUINCVp8ZOk4LkqyxlvraikxEtLy8iFdef4Fns37MtvwstuVn89yO53nptVepra8jb2ce23K2ZQq/b7VmZ7rdc9b8rh08v3M7z7+wg+dfyOFftv0L//2/fI+/+da3+Ps/+RO2fffPyf7e9/j//vI/8z/+45/wgz//M374/f9BXm4WWXlZZOXtYEd+NjsKctm+M4es9ZqgX7Vl5W0nu2AHP97+DO/96l2Ky4vYlvM8Ofk7yMnLIjtnGzuyn+Ojj9+jqrqEiorD1NYU0yAuy1znjTmiTRIx9bUViIoOcmD/r6mqKKG4+BA7sp/j5+/+G3teyOdXH76/pao6Xq8LuaJ+PSKaklClpn49InpvEc1ERO2mR5qWJYjoU8bw8DABnxufy8zs9BQLC/NEwwE6WpP4XRYCHhsrK8ucPDFB0OemLRkjFvLR39PJ6uoqne1tdLQ0Ew/7iQY9zJya4ubNm3icdvp7uwi47UQCXhYXFjgxMUE0HKCvq4PmaJDOtiSrq7dJxiMkYyGiQQ+xoIfpqUluXL+O2ailp7MNu0mHx25iYX6eUydPYreYaE3EiAY89HW1rx9HK/FIiLDfQ9jrZPzYKLdu3cJhM9PZ1oLPYcFlNTJ38wazMzNEw0F6e9qIBuxEAk5WV2/T2hwnHglh1KqIBv2P7Zpfv3YNq1GH12EhHvKzfGuJsaNH8bmd9HS00RwJMPD/s/fe33GV9/7v+RPO7/e7vjff7znJIbRA2kmh2ca2erFsYxsXuVuWrDYatRlp1Gc0vRdpimY0vfdRt9zAYCDUlO+6J0AAQyAHSCDASSCv+8NIg40hISf2DevGn7Xea2b23vM8ez97tv3SpzzPU5f4+OOPefziI1x85DxnVxZZKqR54/XXePPNN8kk4zz1xOOszOdYWcjxxz/+gWef/gm5dJxHz59mdTHHsz95gk8++YRzZ1a4+Oh58qkoi/kUv37jMu/+9l2yqTiPnDvNynyG1aU5PvroI37x859ydnWZR86ucGF1iZ+9UATl00sLXLr4KPO5FAu5FP/5m7d45523KeTSPPPUJZbnMizkUnz04Qf87IXnmcunuXh+lQurizz79CX+8Ic/cPb0Mj954nEWCxlW5nO8cfky77zzDqsrizx16TFiIV8JWm/aTbtpN9auDM1f6Q1dVzjgJOCdLi636bbgcBqYduqZmtZjtmh54YXn/2IfTz/zNNseaqBV0MqeChL0gAAAIABJREFU/bvY37gbi0mLQjbKxOggOvUkdpsRl91SCh3/ORA9dHQ/Vdsqqd21jbpd26lpqKXxyGFMVgsP7XmIuh11bHuo/gtXJ/prtGN3Aw/tbmD7nu3U7Glg276d1G6r5oHvfocN37iF+m/ewa5v3M6B2+6i4fZb2fL1/0XN3XdRd//9PLS9nm07t1P/UAMNDzWwfVcD2/Y00LDnv38+Dbu2la7tShCt21FbmmJq+446GrbX0C8SYDAq0elkmE0Kpq3aUgrEZ2HftvaHwdiwGINOiUoppbauAkFXK7v3bGdQ0s8f//iX80Tz+TQzbhvTdiMOp4kZj4VZ3xTBwMw1IBoL+4hH/MQjfpKxALl07CaI/iPbL3/5Sx579DxPPbrCM088wupSHpV0kFTEw1MXT/PYuQV+9vxPiIdmsRoUnJ7P8Pi5FR47d5rnn3kKs1aBZ9rChdML/OTiOZ587AKPnD2NQSljLh3j0oXTPHZuhZ8//wxR/yxWvYpzSwUunT/NI6uL/Oy5p5g2qbCbVZxfzvH4+UWeffIRVpcKaOXDRP0Onn7sDI+dW+IXLzxLJh7GolWynE/x+PnTPHZ2hWefuoRFq8BpNfDI6iLPPH6BJy+e5/zqMlr5OHOpKBdOL3Dp/Gl+/tzT5JIx9MoJ5tJBHj+/wLmVHD997id47Bb0Cilum4XlubkbNubvv/8e508vlsbg588/jdtuQS0dYbmQ5uLZZc4tz/PCsz/BpFHgnjYVx/ex8zz12HkK6TgGpZSFbILHz5/m/PIc/88vXiDin8FuUnFhJc+lC0s88chpfnLpEYyaCWYdRi49ssRzT57n588/yfkzS2jlw8xnQjx6Zo7Hzi3yixeexjdjxaaXc+H0HI+dXebi2RWee/pJTGo54Vknj64u8sSFVV54+gmW53PoFGPkEn4uXVji8XML/OKnTzPrtGLSSDm3lOXi2XkuPbLMpUfPIR8bxOu0cvHsMpfOn+b/vPAsF84sM2VQE/HNEPbN8Js337xh437TbtpN+9SeePIx5ueTpdWUYmE34YCTcMBZAlH/7BRetxWP28KMx4LNrsVoVqI3KHn+hef+Yh/PPv8cD+3dVcwRPdbIwUN7MRrUyGWjjI8MoFFKmbLocUyZmHFY8brteN123E4bjikTVpMWk16FTj2JRiOn8fA+KurKqdlZR83Oeirrqzlw+BAmi5kdu3ZQ01BD3Y5a6nd+CqTbHqr/UqrfWXeVGnbUsauhnoe2N1BTX8O2nfVsq6ti8/e/x5Z/u5WGf7uD3f9yG4du/Tbbv/GvVP7v/0nlLd+g/t572FFfS932Bmp3bKN+Rz0NO+uo211H/a7P7/vzlvn8vPNbv7aK2nI6ezpQaOXUNFTTsHa+Ddtrqd9WSV9/5xqISjEZ5UxbNFfl4q6PsXPajMWoQTk5xqikH71WgVI5QcP2Gnp6OznQuIdBiYg/fomCpWwuxbTdhMWqZdpuwDljYmbWgt/nvAZEiwAaJBkLko6HKOSSXL78FV3i809/+hNvvfUbXnn1FS6/fvlm7th1tg8//ICLFy9y8ZEzLOaj5NMBogEHsYCDQjrI6mKKc8tZUrFZHFY1qegsZ5ZynFvJM5+NMeu04nfbmEtHOL9SYHUxy1wmitdpIeJzslxIsjyX4uxSjljQzazTQjzoZnUhw+pilsVcHJ/byqzDQCbu5fRCkuW5GJm4l7BvmuCsjcV8lHMrWZbnkiTCs3jsJuIhN2eWcqzMp1mZS+F325h1WsgmgpxbybMyn2YuHSHkdRD2OZnLRFmeS3F6IUMs6MZp0xPxO1kqJFhdTLNUiJGJ+4n6XaRjAWL+WRbz+Rs27m+9+TqPXVhhdSHDciFJMuLFPW0kFnSzMp8ujc2s04LHYSafCnNuJc/qYoZ8MoTXZSXgmeL0QobT82mW55IkIx5mXUaSETdnltKcP52jkA4y6zQS9k2RirhZXUqxMp9gIR9lZkpHNOBgZT7B6mKKxXyUZMSN320mk/CxMp/i9EKahWyMaGAG/4yNfCrM+ZUCK/Np8qkwXpe1OI75KGcW0yzPxYn47YS8UyTDMywVYpxbybCYjxLy2vG5psgnI5xZzHNmKc/KfIZE2Es+GWZ1PkM6FuCtN9+4YeN+027aTfvU1kPz8Yj7moKl9embgj57CUQdTgNmmwq9QY5GO8nza2lFf86e/+kLPLR3F0MTQ6h0cjo6W1CrZExODDM+MoBaMYHNrMM5bcbrtjM7M43HNYXLbinlh+o1ctSKCZTKCfbu38XmygfZWldB+bZqNlds4eHG/ZgtZuq311NRW0FVfSXV26qoaaimpqGaqvrKa7S+78+pdls1O+vqaaitpba2im3bqqkt30j59++m5s7b2HX77Ry841scuuNOdnzzG9T+2zeoveNO6u65h201VVTV1VJZX0N1fRXV9RVUNJRT1XBt37Xba65RTUM11duqPlc1DdU8WL6Jtq5WFFo5Wyu3UFVTTnVtBTV1FVRUPkhPbzsGgxKtdgK9TorNpMJuM5bycdeX9rTbjJj0KuTSESTiHgw6JWNjEoTd7ZjMGk40Haa3t+tLeUTT6QQWqxazRYPdYcThMuKeteL3OQj7PdcUKKXioSKIJkIUsgkuv/YVBVEArUHH0abDiIf6S8UtN+362BtvvM7ZcyvMFZIszSVJxn2YDXLsNi2ZZIDFuQSLcwn8s1PIxsU4pnTMF2IsL6TIZULYzCrUihFiYTdL80kWCnFiYTd6zQQG7QS5dIilhSSFbISAdxqtagy308R8LsrifIK5fJQpixrl5BAhv4PFuQTz+RipuA+zUYHJICeTCrKymGZxLkEo4ECnHsftNLE4F2ehEGchH8NqUqJRjhIOOlleSLFQiJNJBtBrJjDpJ0nGvCzOJVhaKCbm69Rj2G1acukYi3NpCtkoiegsbpeRkN9OOhFivnDjlvh8/tmfcOHsHEvzSfKZMNHQDFrVGC67gYVCnOXFFIVshCmLGpV8mHjEw0IhzuJcglTch0ZZXJGkkI2wNJdgLhe9anznclFWl7NkUkFM+klU8mEiAWdxDOaTpOI+tMpRTPrJYhvzSebzMbwzFnTqcWZnLJxeG/O5XBS7TYNcOkgs7Ob0UqZ0j/SacWxmFblMmKX5JEvzSQLeadSKEbxuKwuFOCuLGQqZMHabFp1KRiQwy/JCjpXFPAuFNJHgLEGfm/l8iqX5XCkn9abdtJt2Y+2JJx8r5YjGI54SiEZDM6U80XUQdc+YsTuKIKozTH55EH3heR7au4sJxTh6swZBVytqpZSJ0UHGhsVolFKsJi2OKRMe1xQe11TJUzdl0WPSqzBoFWiUUpRKKQ/vf4hN5RvZXLOVrXWVbCp7kD0H9mE0m6jdVktZTRmVdZ/CaFV9JZV1Fdfo8+D0s6qur6aubhvVtbVU1lZQW19Gddk9VPzgDuq+fQsNd3ydnbf9K7vvuIX6O+6k4rY7qfjW3VT++B5qq6uorKuiom69/3LKt22lsv7avj8PNj/vvK88dh1E5ZpJNm7dQFnFZsoqNlNesZktWzesgagCrXYCnXYCq0nFtNVQ8oquL+05bTVg0quYnBhmUNSNXqtgbHSQAUkfTpeNk81H6Rf1fGkQNVu1mMzqYnjeZWRm1oLP6yDkcxMJzl4Vll8H0VQ8RD4T/2qDqEaron+gG7vTwu9+99vr3fw/tL311pssn54nl42xkI8TCboYH+lDOTlEMuZlPh9jPh/DZTfQ39OKUScjlw6xOJcgmwqiUY4yKOrEPztVgsigz86IpJvRoZ4SAOYzYWYcRoYHhViMCnLpEPP5GPlMGJ16nEFRJ26XmblclLlclFjYzfhIH6NDPSSisyzNJ5nLRXE7TUjEgtJ5rLehkg8j7msvQm4+VmpjaKCLseFe4hEP84U48/kYAe80o0M96DVSsukYC3Np8tko0bALl0OHz2Mjkwxz/uzqDRv3p596nNXlbGls3E4Tw4NCjDoZ2VSQ+XyMbCqIQStlaKAL/+wUhWyE+XyMaGiG4UEhKvkw6YSfhUKcuVyUaZsWcV97CVAXCnHSCT/SMRED/R0EfXYW5xIsFOKE/A4GRZ1Ix0SkE/7SmNksakS9bdjMKhYKcZYWUmTTIZSTQ/R0NePz2EptxCMeRod6UMgkpBP+0nbHlA5xXzsWo4JCNsLyQopsKohOPYFE3IPXbWdxLsNCIU02FS3lKmVTUc6fWea9m8/4dbOPP/mEDz/6iI8++og/fvwxf/zjH6/Rxx9/zIcffcgf/lAsRnj/vff4zW/e4t133+Gdd97mnXff4a233uSPH3/8d7uODz/8kMuXL3P59dd5b20miJv2t9ulS49RKCRK4LlePX9ljuj6mu8zLhPTdj0mqxKtXoZaI+O5vwJEpcoJ9BYtXcK2EohOjA6WQHTaamDGYcXttDHjsOKYMmEz6zDqlOg1crQqGQrFBLv37mDD1gfYVLWZLbUVbNy6iV37HkZvNFBTX8PWqq2U15RRUVteAriK2vJr9GVAtKq+ioq6WsrqqtlcW0Zl/VbKt9zDvXffwv23foP7vvEv3PeNf2XDbd/k3lvv4kffuJN7bvsWm374I2pqiiBZXltGZW0Z5XVlbNm2lfJt14Lo54Hy553zlee9qWwjrYJTTKplbNq6gfLKLZRXbqGicgtbyzbQ3dOGXi9HoxlHpxnHYlRiM+twTJlKY7wO+0adEtn4EIP9QnQaOaOjA4gHepiaNnHs+EH6Rd388Y9/ORqdziSKc5eaVExNG7A7Dbg8ZmY90wRmXYQDnqtANBkLkogGSMaC5NKxry6I/ulPf2JxcY65+SThiPemR/Q6269//QYLS3nm51IszSeJhmYY6O9gbLiXVNxX8i7OOIx0tB5FqxojnwmzvFD02ClkEgTtx/G6rSWPWDjgpL+nlb7uUyRjXpYXUsznY7idJroFJ9FrJshnwiVwUStG6Oo4wYzDWISf+WLyvKi3jV5hC4noLCuLaebzMWYcRjrbjqFWjJBf88LN5aJMTgzQ2nwIl91Q8uLGIx66BSfp72klEZ1lLhelkI3gdVvpFpxELpWQTUVZKKTIZyKEAw7sU2o8LjOxsLdUYX8j7OmfXOLMSq40Ns5pPf09rWhVY+TSIRYKcbKpIFrVGN2CkyXv4vo96hW2IB0TkU0FS+M+ZVHT1nIYo05WOjafCTM00EVn2zHCAScri2mW5pOE/A4E7ccZGugqQeTiXAKrSUlLUyMWo4K5XLTo+U6HkI6J6Gg9SsA7zdJ8kpXFdOkejQ71kEkGWFlMs7yQwm7T0tF6FL1mgoVCnNNLGQrZCMrJYYSdp5idmWZlMc/SfJZ8Jk7QN8OMw0oyFuTM6fm/+o/N1994g3AkRCDox+fz4vbM4A/48AW8V8iHP+jD5/fiD/hKuvoYLz6fl1mfB7fHjcNhx+ly4Jxx4JxxXiuXA4fLjsNlL713fd5xV2h9/5XfWX/vdLtwzc7g9Lhwul3MeN3M+r2fK49/Fo9/tvjeN4s34GU24GXWP4s/5Gfaacfjm8VqtzGpkqPUqjBPWTDZzCWZbRZMNgumKTN6oxaDUYvZamRcOoJ0cpwJ6eja+zHGxocxmnUEQj5mvW5mfVfL6/MUX/0evD4P3rVtxc/uaz9f+XrFMb7SZw8ut4NgyM+7v32XF196kf0HGzl4+BDRWPQGPZVfHXvxxRd58cUXb3g/Tzy5BqJBJ7Gw+6pJ7aMhFyG/Yw1Ezcy4jEzbdRgtCjQ6KSq1lBe+TI7oc8+ye/8eRmWjaAxKOrtOoVbJkE0MMzE6iFoxgcWoYcqixzltZsZhvQZEdepJVIoJ5Ipxdu/dwcatG3iwasuXAtEvAr0vCnt/VuV1lZTVVbKlrpyK+iq2bn2Q79x5F7f/y53c/vXv8a1vbeCu72zhjtt+wO1f/xbf+ebd3P+je6iuq6KyoYLK+jKq68qoqC9na0M5FQ3XekA/D4K/CEbXr2nj1g2c6mxhUi1jc/kmKqvLqKwuo6qmjLLyjQi7W9Hp5KjVY2g145gNCqwmbakwzGW34JgyMWXRY9AqkI0PMXAFiPb0dGK26Dh6rJFOQeuXmtQ+m0sVp4wyKj8FUbcZj3sKn9tOyO++CkQT0UARSKNrxUpf5embTAYtyslRbFY977x9c2qX62lv/Pp1lpbnmCskWZxLlEB0eFBIPOIphdtddgNNx/ahVoyUvG25dAjZuJi2lsN4XOaS93QdlISdTVd57GYcRlqbD6FRjjKXi5Y8qCr5MC1NjTin9aXQ8TpE9nQ1k4jOloBtxmGkpakR5eQQhWyk5FGUjok4dngPLruB5YUUi2vhpq6OEwg7m0hEZ1lY84j6PDY6Wo8iGxeTSUZKIBr0TWM1F5ebi4Y8rK4s3rBxf/bpJziz5hGdy0VxTuvp6WpGJR++ypupnByi/dQRZmcsJeAM+R10tB5lRNJNNhVkeSHF8kIKq0nJyeP70WsmmMtFWZovpkRIxAJamhoJeKdZXij+wREJumhtPoSot+0qb6bFqOD4kYcxG+TM5aKsLKbJpoJIx0SlNpbmkywvpIiGZujpar4KZpfmk9htWlqaGtGqxkpAnEuHUMiGELQ343XbOb1UYHkhRyGbwOu2Y7cZi+GZbOKvDs2fu3CO0YkRBocHEEn6GRgWIx4SMTAk/lTDX6ChazU4MkBXr4BTHS2IJf2Ih0SIJddKNNh/jcRDoi/WF31XUlTf4LpE9ElEiIYHihoSf0YDV+xb2z88QP+QmH5J8bs1DbW0drUjHh6gW9RD72A//UPi4qtEdJVEQ2IGJCKGhsUcbzrCyeZjSIbFiAZ6GR4dpE/UzdCwmEFJPwOSfgYl/QwOfUaSq99LhkV/k8SDfQyPDjI4JOLFl17krbfeQtDVRXt7O8Fg8AY9lV8dk0gkSCSSG97PE08+Rr6QIBx0EQ17iMe8xKNeohEP4aCLoN+Jd3YKt8uCy2liyq7HaFah0clQqiZ4/NJFPv4LnvKXXnqJlvYWxuXjqA0KOgQtKBTFCu2xETEqpRSzUYPNosc+ZcJpt+C0m5m2GbAYNei1CtRKKXLZGJOTY+zet5NN5RvZUlP2aWh+/3povuaa0Pyfy7P8Mqqqr6ayrpKKmkqq6mrZUl7Nd75fxv/++ka+fuc2vr2xhbs3tXDb9+q5/c6N3H3Xfdx77yaq62uobqikZlsZNdvKqWyoomx7NVXbr+3jy4bmr9SGLQ9wqrMFmUrKprKNV3lEt2zdgLC7Fa1Whlo1hkY9hkkvx2LUMG014Jw245w2Y7cZsZl1GLQKpGMSxH1daNWTjI4M0NPXwbTDRGv7SXQ6zV9cZOSjjz4iHPZjNKkwGJXYpvRMO/S43CbcbhuzM8X5SyMhL9Gwj2jYRzwaIBbxEY/6SScjX10Q/dOf/sS5M8vMZRPM2G385838setqr79+maWVIogWshFCfgei3jYGRZ1Egi4WCnEK2Qh2m5YjB3ehkEnIpoIUshHSCT9jw72cOLoXl91APhMmnwkTCbro6jhBZ9sxEtFZCtkIuXQIx5SO40ceRjk5RC4dopCNkM+EmZwY4MjBXUxbNczlosznY0SCLgTtxxG0HycWdjOfj1HIRnBM6Th2eA9y6WCpjWwqyMRoP4cO7Cx5ROdyUSJBF51tx2g/dYRoaKaYT1qIE/BO037qMNIxEZlkhPl8glw6TNA3jckoxWXXk4j6byiI/uTJx1lZ8yqvj42g/TgKmYRcOsRcrpizKh0T0XRsHzMOYyltIeCd5uTx/Yj72knFfaXrMhvkHDu8B41ytJS2kE0FGRR1cvzIw8zOWJjPx1goFFMwmk8coFfYUkxbWBtfs0HO4caHSjC7spgu3edjh/eU2pjPxwj5HXS2HUPU21a6z/P5GHablhNH95agev08JkZFtDYfx+OaKoXmc+lYafqQdCJEOh7+q6Zv+viTT5gNeugb7qV7QEjPYDeCvk66+gV09QsQiDrpEgkQ9Hci6FtT/6evXf0CuvoEpfedfR109nXQ3HGSpvYT9Ax00y0WIhR10SUSFNUvQCjqQijuQjhQVLdYiFDcVWz7yr7W+1trf72dbrGQ7oFiu8L1Ngd66B7sRSjuoUvUjaBfiEAkpEvUfY0E/UIE/Vfv65X00z3QS5eom6015ZxoP0mPpL90fJeom57BProHeukeWOtH3INQ1I2gu4PBIRH7Dz7MoSMHEA32IewV0N3XhWiwl67uDnr6hfT2C+np6/rL6hf+Teru66K3X4hkWMyrr73CSy+9RGvLKcaGR1haWLhhz+VXxb72ta/xta997Yb3c+nSRXL5YrQxGvMTjweIxgJEIj6CQQ9+/wyeWTsulw2H04rVpsdg1KA3qFCqpBQKWX796zd4++23+f3vf/+F/Zw9fw6pagKVSU5b10lUygkmhgcZHhKhVEoxGtVYLDqm7WbsdjM2mwGzWYtOr0SllqFUTjA5OYZMPsaufTvZWL6RB2u2srm6rAiiex/GZDJRXVf9uaH5LxeG/zxVU1VbR01dDTU1NVRVl7O5qpLv3reff/n2Pm67r5l7akb5Yfkwt/24mW9+/wDf+uEO7nmglqqaOurqKqmtL6OqvoLyhio2b6+jclvtl/LEfpGXdP3aNm7dUArNby7fRHnlFiqry0qh+U5BM0rlGHLFMGrlCHr1BGaDGptZh91mLMHoemh+PUdUp5EjkfTQLWrHZNcyqZbx23c/P0r1ySef8M47b/P22//JSy+9iGfWiVY3idmiYWq6ONWXc8aEZ9bOrNdFwO8mFJolEvERjfqJxYJEYwFi8SCZr/r0TTq1kvLNmzi0fz9v36CVbv5R7dXXXiFfSJPPJcilQwR90/R0NSPuay8VyOQzYaYs6hKIZpIB8pkw6YSf4UEhjfu245jSkc+ESwB46uRB2loOEwu7S8Bpt2k53PgQkxMDpBN+cukQuXSIseFeDuxtKIHoehutzYdoPnGAWNhdgs4pi5pDB3YiHRNdBbPrbTin9aUQfDQ0Q0tTI80nDhAOOClkI8zlovg8Nk6dbGR0qJdsKkohGyOdCBD0T2PQjWO3aYmFvaws3bj/8J68dLGUVpBLh7DbtLQ2H0I5OUQmGWA+HyMZ8zIx2s/RQ7tx2Q2l6w367Bw9tLuU+rAOexajgkMHdpa81nO5KNlUEFFvG0cO7roKRMMBJyeO7qVbcPIq0DfpJ9m3p77Uxnw+RjrhZ2igi8OND+F2mkpjvn6f19Mn1u/dtFXDoQM7mZwYKBarrXlmRyQ9nDx+CLfTxlwuSSGbIJ0I45w2YzPriEf8pBNh3vz1F1fNf3Z1j7d+8xZdAwKOtR+lSXCCk11Nf5WaBCeu0cmuJg6fOsTB5kaahSc51dNC10AnnaJ22vpaae09xameFlp7TtHae7Xa+lqvUWvvKdrW9rX3tdHe31ba197fRoeonU5xBx1iAZ0DXXSKuxAMCBEMCOka7KZrsBvBgJBOcRcdIsHa/k+PEQx0lb7XIRYgGBDyYM0Wjnc2IRgQ0i7qpHOgC8Hgp+11DQoRDK71sQbEfYO97Du0l/2H99Ez0INQ1EW3SPh3k2ioH8nYIK++9gqvvvIKjQ/vpaG6Fr/Xe8Oey6+CPfroo/zTP/0T//RP/8Sjjz56Q/t6vASiPiKxNQiN+gmFvfgDbnz+GTyzDpwuG3aHBavNgMmsRaOVo1RJee75Z/nDH/7Ab3/7W958801++9vf8vvfv1/KN1631bNnGFeOo7Eo6OhpQaOZZHJsiJEhMXLFOAajGrNFx9S0iWm7GavNgNGkQatToFLLUCgnkE2OIpWPsnPvDjaUb/hcEK2pq6bsuoJoFdV1tdTW1lBbU0NldTkbK6v4/uYTfLe8l+9Uifl+9Tg/rJFx9+YBbruvlbvuO8iPNz5ERfUOamtqqKuroKa+gsptVZRtq6VyW811B9EHyzdRVrH5KhDt6DyJQjGKXD6MSjGMbg1EraYiiDqmTKXQ/JUgqtcqGBsX0z/UhcVlYEw2yvvvvV+6l3/605/48MPiqnq/eestLl9+jd9/8Hs++eRjMtkkRlMxNG+1abFNa7E7Dbg9U8x6Xfj8MwRDs8XfW9Rf+r1FYwFS6SivfpVBVNgl5M7b72LXzj385jc3QfR62quvvUJ+Lk0+V8xJ9M9OIexsQtTbRizsLsGM1aQswcU6RKbiPoYGukogmkuHyGfChPwOWpoaaW0+RDQ0Qz4TJpcOMW3VcHD/DiYnBkjFfWRTQTLJAKNDPRzY28CURX1VG6dOHuTk8f1Egi6yqSD5TBibWcXB/TuYGO0vbcskA4xIutm3px67TVvqb93rd/L4fkJ+Rwl8PS4zzScOMCLpWavWi5KM+fDP2tBpRpm2qomGZm84iC7OFdMbMskAUxY1p04eRCGTkIx5yWfCJKKzjI/0ceTgLpzT+tL1BrzTHD20uwSA6x5Us0HOwf07UMmHyWfCFLIRMskA/T2tHG58CM8VxWBBn51jh/cg7GwiGpopAbFRJ2Pv7rpSG3O5KKm4D4lYwKEDO68C0ZDfwcnj++npai4BcSEbwWJU0LhvewlE53JRMskAw4NCmo4dZMZhpZBNkM/EScVDpVyw9byhX//69S8ct1//5tc883+e5rn/eIbnf/kcq4+fxuQ2YHDpsHrNGFw6jDP6Ly2T23CVzB4jRpceg0tH/0Qv6iklZo8RvVOLzq5BbVMiN8uYNEmvkcw4wYh66BpJFAMMysUMysUMyEQMTIoQSfvoG++hZ7Sb7pEuhMMChBIhXYNCOsUC2vraOdXTSmtvG2197bT3ddDe30GHqJO2vvZPt69t6xB10t7fQadYQIeok4rtlTR1nqRnuLcInQNddK1B65XqFAsQiLvo7O9ENNxP4/FGDhw7QPdAN0KREKH476NeSS+9kl76JH288torvPzyy3ScbEEzLuORc+du2HP5VbATJ06UQPTEiRM3tK91EI1E/SW57sp/AAAgAElEQVSFwl6CoVl8/hm8Phcz7mmcLhvTdjMWqx6zRYdaU4TDzxYrffzxx7z33nu8++47fPjhh6U1yp955mn0Fi1yvZT27mbUaikTw4MMDfYzKR/DaNJgtuiw2gzYpoxYrHoMRnUJeOWKcaSyESbkozy0dzsbtm5gU/UWNleX32AQraSmtora2mpqa2sor67kgcoa/r2sibvLhdxR0cvdtWN8v36SuyuGuPX+du66/yg/3PQwZVW7qanZRl1tFXW1FdTUVVJdV1Wcyuk6g+imso1sLX+QiqqtlFduYcvWB2jvaEIuH2FycgilfAitahyTXoXFWCwMs9uM2G3Gq0G0X4heq0A2OURHTzOGaTUGq57fv/97PvnkEz744AM+/PAD3n77N3zwwQfXOAZy+TQms7rkFbXY1EzZtbjcNmZnnXh9LgJBD6GwtwSj66/JVIRXv6qheYBuYR/f/9697Nyxl7f/82aO6PW0IohmyGWL0x35Z6fo6jhBf08rkaCrBDMWo4KD+3cgGxeXIDIZ8yIRC2jct73kscumggS80zSfOMCpkweJBF2l7VMWNQf2NiAbF5NO+MmmgqTivpI302ZWkU0FyaaCBH12WpoaSyCaSQbIpYvTRTXu2874SF9p27pn9uFdtUxZ1CXADQecNJ84UPKIrp/Her7riKSbZCxINhUmEfXi9VjQqIaxmVWEA26WF2/chPZPXrrIQiFGJhkgGfNiM6s4dfIgcukgiegsmWSAWNjN2HAvhxsfwjGlI5sKkkuH8M9OlUA0HvGUANWkn6Rx33ZU8uES0KcTfvp7WksQuQ6oAe80xw7vKXlE14HeoJWyd3ddqRiskI2U7vPB/TtKU0PlM2GCPjtNx/bRLThJKu4rbTcb5BzY24BCJimla6TiXoYHu2k6dhCX3UI+EyeXjpGMBUtzBUZDXkJ+N2+sLfv6efar119m9all5h8vMPdYnszZJIXzGbJnUhTOZ8msJpm7kKPwJTR3Icf8I/lrlD2TYu5CDqVtknAhwNwj+au/ez5L4UKO/LnMVcqdS5M+nfhcpVbiJJdjJJaixBcjJJaixBbCROaCBHM+AjkvswkPMxEP9oADs8eK3mlEZdUgM8qZ0MsYVY8zpBxhUD6EWDZI37iI7uFeBJKi17O55xStfe0095zigcoNHG49Spuog5beVlr72mnr76Bd1IlAIkQgEdI52FXUQBedfZ30SXrZf2Q/ew/vRdAvoEvU9XcD0a5+Ab2SXgbGBnjt9dd46cWXeOD7P6L83g3EQ+Eb9lz+ve3DDz/kn//5n0sg+s///M8lmLsR9lkQDUd8BIKekjd01utkxj2Nw2ktgehVHtG1pYU/zz7++GM++P0H/OG//sBPf/4zvKFZpJoxTnUeR6mcQDYydA2IWqx6rDbDVSCqUE4wKR9jQjbC+OQIOx5u4IGtD/x/B6I1VdTWVVFTV0l5TSUPVNZy1/17uPX+I9xV1s53a/q5Y6uQWx9o5ZYfH+H2e/bxg427Kat+mJqa7dTV1qzBaCW1dZXUXGcQlamkbNq6ga3lD1JeuYWyis1s3nJ/CURlkxIU8iE0yjGMOmWpMOzPgahkaC0079QRigd59513+fCD4rLbfy5XNJNNYjAq0RsURRCdUjNl1zHjtuH2OPD6XPgDboKhWUJh71UgmkiGefXVX1233/Z1B9GRUQU//HE5jQdP8fbb717v5v+h7fLl1yjMZ0uh+YB3CqGgCVFf0SNayBVzMC1GBY37tyObEBcBMBMilSh6RA/u34HHZS7la65DZGvLIaLhmatC8wf2NiCXDpbgKZ3wMzHaz8H9O5i2ashnwmRTQUIBRyk0Hw3PlMLSNouag/t3lELz6wA1PChk7+46pq2aopcxFSAcdNLS1MipkwdLKQKZVKAEosWZAULk0hGSMR++WSsa1QgWo4KQf+bGgugTF1mcS5BJ+knGvKWKd4VMQjziIZMMEI94Sh7RddBfB8ATR/euzQbgKW03G+QcPLCjFFZfv3frHtH10Px6nunxow/TIyx6M9c930adjH176tGpx0v5uumEH8nAtR7RcKA4vuse0XVvq82sonH/dtSKkdL0WsmYl9GhHpqOHbwmNL8+V2A44MHrdvD65de+cNxevvwy+QtZEmdihJeDRBYDJFaiJE7HiK9ESaxESZ6OrW2Lfvp6Orb2+lnFSkqejpFcLb5mzqUYNQzjzXpIn0l82vZqnNSZOKkzCVKr8WuUOZv8QqWveJ89n75GhXN55s7NUzg3R/7sugrkzxbIncmTOZ0lvZIhuZQiNp8gUogRyoUJZEJ4kz6cYRfTATt6p4GaPbUMq0ZQ2dSM6yaQKIboHetDONxNu7iTdnEHbaJ2WvtbOdXXRltfB50iAbsP7mHv0f30DPXSJRZ+qoHPSPwl9dnvfUl19HciHOimb6SfVy+/yssvvsRdX7+F73zjVmZs0zfsufx7WyKRKEHouhKJxA3rrwiiqau8of6AG6/PVQJR18wUdoeFqWkTtikjRpMGg1GNWjPJM0//5Ev18/Irv8ITdKMwyhAPd2O16JCNDjEo7kUqG8FgVGMya0swarborgJR2eQo4xNDTEyOsOPh7dy35T42VV0Nokaj8YaAaHXtOohWUF5TzqaKKr71g63c/u/V3PHDem77QR23/HsNt36vhm9+t4I7flDJjzbUUVGzi+q67dTU1VFTV03NWhvV2/58EdV/F0S3lBXzRMvKH2Tzlvtpaz+BTDaETCZBuQaiBq0Cs6FYsLSu9WKlyYnh0oT2Ov0kI1IRZqeOwmL+LxYqrVs6nSiub29QYLFqsU5pigVLM0UQnfU6S+H5da/o+msiGeaVrzKI9gi7ue+HP+LA3v03PaLX2V7+1cvk8xny2SSFTJiw30Gf8BQD/R3E13IHc6kQU2Y1Rw/uRj4xSC4VZD4XI5cKMj7cx5HGXfjcNgqZCLlUiJC/CJHtLUdIRoth5nw6jHNKz+H9O5FLBylk1nIYk4FSsZLDpqOQCTOXiRANztB68hCtJw8RC86QT4eZy0axW7UcadyFbExcPDZbbGN8uI+Hd9UW21grAIqF3LQ2H6Kt+TDxsIdCOkwmEcDtMNFyopHxkT6S8SDZTJR4zEcw4ECrGcdkVODz2llaKNywcX/qiYvFyviYj1TMy5RZTUfrURQyCamYj+waiE5ODHD88B5m7Eby6TCFTIRIwEnLiUbEvW2kYz6yyaKn1GpUcvjATjSKEfLpMAv5ONlkkMH+Do4e2o1vbQqo+XwxR7Tp6F76u0+RjvuZy0bJp0OY9cXwvk49zlw2WhzfRIBRSQ9HD+7G4zSvbS/m4Ha0HEHU00oq5mMhH2MhH8Nu1XL88MNolWMsFhLkUiFSMS8ToyJamg6XQHQulyAVD2E1adFrJomGZvHMTHP5z4Doi7/6JbmzaaIrYUJLfiLLISKLIdLnkhQu5kieiVN4NEf+kQzZC2mWnlygcDFH/tEsS08uMHcxT/7RLIuX5sldyJA5l2LuYp702STR5QipM3ESqzFSZxOMmUbw5WdJn0uSOpsgeSZOcrW4P7EaI7kav1ZnrlV8JUp8HXxXYyTXQfYzx2VWk2RW02ROp8mcTpE+nSJ9Okl6JUXmdJrsaobcmSy5s0Xlz+aK79e2Fc7lKZzLkz6d4lBrI760l6XHFsmspokUwkTmwvjSXjwJN66IE5vPimFGh2Zag8qmRm5S0NhykH0n9tM72k/HgIB2UQetfW209q+lAogEdIi76BQLEQx0Ixj8jAY+VdfAlZ+FCMRFdYq76BStSSy8Itf1anUNdtM7LObV1y/zy//4JXfccjffveMHuKZnbthz+fe2urq6a0C0rq7uhvX3+KWLZHPJkmcqGJq9yhvqmXVcBaJWm6EEjQrlBM888/SX6ufyG69jdVgYVQzRLe5ArZailk2gUU2W2lv3il4JoUqV9FMQlQ4zMj7I9t31bKzYyIaKzWwof5AHNm9g157dGIwGqmuq2FKxmbLqIoyWX1FB/99VZQkiy6msKaOsfAvf/c63uev2O7n9ltv48fe/xw++dxf//t1v86077uDOO+/kgQc2UlldS1VdXVH1NVTVfz5cfnG/V88neiVcV9SW88Dm+0vTN61XzW8tf5AtZRvZuOkemluOIJMNIZUOIp0Qo1aMrIFosWDJatJiNqgxG9RMWfRYjBq0Khk6rYIJ6SB9EgFqi5xEJv6lf0+pdOJqj+haaN45Y70KRANBD8HQLNG1vOR4IkQ6E/tqg6jLPMGR+u8z0tXIe7+76RG9nvbWb94iHA4TDQcIe524bHpGxd0MdLczM2UkFfER8bkwaSZpOrSXCUkfEa+TeNBDxOtiqK+Lowd2Y9ZMEg96SIRm8TmtCE4dp+PkUfwuGxGvk7DXiVElpenwPkYHeoj6Z4j5Zwh7nQz1d3GscQ8mtYzwrIN4wIPPaaP1+EHamg7jnjKSDHmJ+lwYlBMcb3yY4X5h8digh/CsgxGRkOONezBpJokH3MQCbtxTRjpOHqGt6TAuq4Gob4aIz4XdpKG96QgDvZ14fQ4CwRncnilMZjVyxRgWqxafz8Hi0o1b4vOnzz1LzD9DdG0MTJpJejqaGR3oIeixEw94CLqnkfQJaDnWiEWnIOieJuafwWM303KskZ6OZoIeO1H/DKmwF71inEN7dyIbERMPeIgH3AQ9dsTd7TQd3ItVryQR9JAMeZm1m2k+eoD+rlaC7uni/Qi4UUmHObp/F8pxCamIrzi+XieSPgEnD+/DZdUT9RXvnX9mio6TR+kXnMLntBILuEmFvZjUMpoO72NiqJ/42raoz8WwWEhby1FsZg3RkIdoyEPQ50SnlmLQThINufHP/nmP6Cuv/YrC2SyJ1QjxMxGSq1HSqwkUNhn9sh7iSxEkSjG2gBn9jIYT3Ufpk3YjmuzlUHsjg8oB5FYZ+1v2MWEcw+DWI5rsI7oQIb4UI3s2Tep0jPRqAqlpjGDeR+5cmtTp+HVV5kzyC5S66nN6NXHNd9OriWu+t35c9myK1OkEB07txRVzULiQI3s2ReZMity5DOnVBLlzGfLnM8X0hEdy5M9nyZ3LsPLEIuP6EcZ0w4QKARyRaax+M1qnCqlpjGH1ID0jfQgGemkXCWntFdDc3c6pnk5a+wS09nXR1t9Fa38XAnEPPQN9dIt76Rb3IhT1lLT+uau/ey0FQIBQJCiF5bsHuumTiOgW9yEeHuK11y/z0su/4pt33Mvd3y/H7Y3csOfy721SqbQ0ddO6pFLpDevv4mOPkM0liMYCJRBdD82vg+iVofn1PE6NVo5Or+SFF57/Uv387Bc/Z3RyBPFYHx09zQwPi5CNSFDKJ9AbVNimjEzbzTic1pLXVatToFBOFHNDJ4aYkA4zPDbA9j3buPfBe9lcU8bGii08sHkDe/Y+jMFopLK64jqDaHFC+8r6Gqrqt1JV8yDV5RupfuBuyr//b+y4/05aH7qX9ofv4VDtd6i5/xY2/+gWKjb9gIryjVTVVlJVX0tFfS0V26qp3HZ9QLS8powHNt9PS0czMpWUBzbfz5ayTWzeuomt5Zt4cPP9nGo9hlw+woR0gLHRPjTKUXTqyRKMrs8nuh6e12vkTE4MMzEmQTLUi7C/lQnNCDaHlf/6r//6yzcZSKbiWKxa9AYFVpuuVKxUDM3bmfU6S6H59aKldW9oIhnmV7966W/5OV9l1x1E5cMdHNvxYwRHG/jPt9683s3/w9vq6iqhgBePw4ZBPcnE8AC9na0YNQr8M3Y8diuTYxJam47SJ2hjyqTDY7cybdYhEnZw8kgjg31C3HYLs2tttJ08RkfLcTST4/hm7MxMWxgd6OPkkUZ6BW24bCZC3hnsFj09HadoOnyAMYkIj8OKx2FDp5DSeaqJk0cPolPKCHicxTYG+zjauJeutpPYLQYCbgcOq4GO5uOcOnGEYXEvM1NmfDN2VNJRWpuO0tFyAvXkOLNOGw6rkTGJiI7m43R3tmIwqHC4rNgdZiRD/YxPSLDaDDhdVnx+zw0b88uXX8M9bcXrmsZm1KKSjTLU381gXxdWgwava4ppkw5hezMtxw8zPiTGPW0hOOtCLRuj+dhBWo4dQqeQ4nc78NitDPZ2ceTAw/QLO/DYrbimzLimzHS1NdN0pJExiYjgrIuwbwatYoJTxw/T3nwcm0FDxOfG65pmXCLi5NFGxN2deBxWgh4nVoMGQetJWk8cQTExgtc1jdc5hUE1SUfzcTpPNaFTSgnNuvDN2Bkd6KPp8AHEPQKsBg2xoJeZaTPdHadoazmOQjbC7ExxKT+zQc2IpI9pqwH/rBOjXsWLv/yPLxy3K0E0cTZCbDlM9myKCeMo//cd/wOtU8WD2zYwaZlAahrjwW0b6B4TcEJ4jP9x6/9F14iAPmkvW3dsYVgzhCNi59YffBOr38LCo/PEl2Il2Pv7gOjnA+ZfB6LxNRC1M/dIEUTz5zMkV2KlY69sN3MmQWwxzPyjeaSmMZTTk8w9mluD1Sz58xkyZ5IkT8dJLCYJ52LMRGYxzVhRWbWMaaVI5CP0TwwiHOqlXdxFW287bcI22nva6eztpLO3k47eDjp7OxGKhfQM9tAz2EvPgBChuBPh+hRb/Z109gkQinroGxLTPzTI5Tde5+c//wXfuOWbfPu738U2PXXDnst/NHv00Qtkc4lSYZJn1oHbY8c1M4XDacXusJSKh0xr0ykplBNodQrGpcM8/yVB9LFLj9MtEtI/0oOgr5XBwV6kwxLksjGUKilqzSQarRyTWVsK0U9Nm0qeV6l0GNFAD6LBHo42H2ZD+QYeqHiQDeUP8mD5Zh7avQutTlf0iFZeZxCtr6WivobKbVupqt7ItvIHOFjzXfZt+Fdaq25jtPG7SI9+h95dt3F46/9iz5ZbeKji36mv3khtXRFEK+trqayvpvpv9Iiuw2h5TRn3P3gfze0nkamkpSU+N23eQFn5g9Rvq6JLeIrevg6GR3pRyIfQqydK0GkxakrSa+Sllavk0hHGRweRDPXQ1d/KmFKCQivnvd99udXM4vEICuUYKvUEeoMCo1mBdUrNlN3I1LQJh9OKa2YKt8de+q2tFy8Fgh5+9auX/5af81V23UE04J5iV819DPd13Fzi8wbYmTNnsFlMGNRybEYdSuko4h4BE8MDGNRy9KpJRgf7GRb10NPZinRkcG27nCFRD6LuTkTdnchGJRjUchQTI7Q3H6errZlhcS8a+QR61STD4j66O06V2tCrJtGpJukXdtAraKNX0IZ6chydUoZsdIjOU030dLYi6u5EI59Aq5Ay2CdE2N5Cr6AN2agEo0aBTjWJpL8HYXsLg31CVLIxtAopoxIR7c3HEba3MCzuxaRVolPKGB3sp6utmYE+IcNDImTyUTRaBUPDYkZGB0r/ICZTsRs25u+//x4OqwmjRoFBLUcpG2NMIqKvqx3pyCBK6SgaefF618dHMT6MXjXJ+NAAgtaTdHecYljci1mnQiOXIurupF/YQV9XO+NDYix6NWa9moG1NgZ6u9CrJjFqlIwNielqa6ZX0MaYRIRFr8Zq0DAk6qFX0FY6D7NOhV41SXdHK+IeAaLuzrU2FEyODdHdcQpRdyfSkUGsBs3afe6lX9iOpE+IdGQQo0aBXiWnr6udQXE34yMDaFUyTHoVyslxxH1d6LUKbGYdg6JufvbTF75w3K72iIZJnYkx90iOnUcaKNu5GXvYxgM192IP2+iTdrP7+E4Sy1EsPhMbah8gdTpJS38LRzoPE1+KcVRwhM0Nm4kuRJh7pEB8Kfr/CxBtbN2HIzJF4UKW7NkUieUo4bnAmkc0zcLFQglSc+fSpFcTLD42x7hhBLlVSv58huzZFOnVBInlKMmVopc4fzZL/myBufNzzF+YZ+GRBebOz5FbzZFcShLOh/GnAzhDTswuExqrmgnNGBLZAL3D3bT3tdEibKa56yStPS10itoRDgqK87EOCtfUTadISI+kn76hAV557VVeeeVl7r3ndmqrf0Qi7r9hz+U/mr3wwvP4A56rQu8Wqx6zuRge1+mVayFyGUqVFNnkKMMjxX8nlSoZv/vd775UP48/eYnewR4GxvvpGehkZESEWjqOSiFFp1diMmsxGNWl+UnlinFUahlqzSQqtQyNVs6kYgxhbwe79u+kflc9O/bvYnN1OT+454fs3L0Li9VCde31Ds0XQbR8WzWVDZupqtlAw9b7OVpzJycrvk7vtm8iP3IHmqbbkB64lfbqr9FUfSv7Kr9HXdl91NVUUVtbT01tPbV1n1bP/y0gWl5TRln1Vu7bdC/N7SeRKie4d+M9bN6ygfqGGh7e+xAN22toOnmQyckhdDopKuUIWtU4WpUMtUKKWjGBXiNfm85Ji1GnRKuSoZKPI50YZlDSQ7eojVGlBKVOwfvvf/EcsVfapSceRyQWMjomRiobQq4cRqMbR6eTo9Up0RtUmMxaLFZ9qfjN7rAwMzNFMhXl/d+//5c7+ZJ23UH0vfd+h3R8kCefvHS9m75pwPLyMlNWEzaTjscuPoJryoJsVMLIQB9e5xQe5zTz+SyjEhFDoh7kEyP43Q7O/b/svfd3VFe65+0/Ydb8MOvOu9bc6fedudPTcW63u+91ICjnhAgiSaCIsioHVZVyjqBElgBlqXIpoFxKgAnGgMHGgO12IIicM5/3hwqUhOQGG9/pnrmb9V11atc5++yztyQ+9exnP491lI62ZorzsslSSqnfXMGO+hoOTE6wpbKMHJWCHJWcxu31tDfv4eD0JHlZmWQpZRTnZdHcuIPB/l46W5spyMokUypkS0UJjTvqOTg9Rd2WSnI1SlQyMbu31tK0cyu9FhO5agVZShmlhbk0N+6gv8eMvruTPI0StVxMTWUpu7fVYTbqqa0qJz8rE5VczNaaalr3NnLs8EcU5Kgpzs8mL0/Djl0N9PVbMBp15OapKSjMprmlkVOnXs8R/8eUR48e0tm6l727ttK6t5FDB6YoK8ojT6OkJD+HlqadTI6NoO1opyBHjUomYktFCbu31zNhHaGytJCCbDWFOWqadm6lZc9uLCY9uWolaoWEipICWpp2Yh0ZonVfE0W5GrIzZWyv28z2us2MDQ9SXlxAUW4WeRole3ZupceoY2ignyyllGyVnKrSIpobd2AdGaJ5z24KslXkqpXUVpezvW4LJz4+xubKUorzsijM1bBn11a0Ha0M9veSp1GSp8mksqSA1j27GB8dprujjZKCHEqLctlWv5mWPTuZGBuluqKEqvIiaqttjvQXLpxfcNzmWkTNEzao81zmxqq45ewzNvFnzz86QXRD2nrae5sRZmfgH+FLZ3876eo04kSxNJv2ErDaj7CoUPqne9EPazFbjf9HgOiGtPXs0e+mf7oHy7iRjr5WhNnpiHIy2CSNQ5STQW51Fjs6ttIzYaJnwsTQR/spqMmldGsRvZNmDCNaZ5uWcaPdomqgZ9xk92d9qZ5xE73jJvomzfRNmhmY7mVwqpe+cTOmYR2GwS66+9rYq91N/Z4tlNQWkFuhQVUkR6QWIFQJyFBmkK5IJ02ejiRLhjRLgSJXzdVr1/j66y/5l3f/G8uC3sega/3Zfi//byuPHj2irX0fuxu3Ub91C3UNm6mtr2JLbSXVW8qoqi6lorKI0rJ854YhtUaOSi1j4A186I9+fJTM3EyUeTJkaiGFhdnUVlVSs7mShm1b2L6jzrlRqb5hs3NZvrAoh5xcFTm5KoqKcyksySU2MZrI+EjWxKxjbXQk4RHLWbUmgurN1T8LiAaG2ZfV7SAa7ruYtNXvkhf9HoVRf6Q29Q/UZ/yeyrjfogj/J0Qr/khs6Aes8HcnPDiE0NDlhIYsIyw0iGVvAUT9gn3xDfJhscciUgTJFJTm4+HrzvqNa4mJ20Bs3Aaio9eRIUiitDSPsrIccnLkFOarKCrIprK8iPqaSrbVb2Z7wxa2N2yhoa6arXYgLS8tICdXiTxLQE6JiootFdx/8OC1f56qq0vJzcskL19FYYmG0opcKqoKqawqpnpzGTW1lc4Nbw32JAb7mndz5MihH/tjPG956yD64MF9yqsr+fg1d+j9e3mzcvz4cT777DQXv/2G27du0rK3iUy5mPqazdy5dZMrl77n0qWLqJVy5GIBE9YR7ty6wY1rMxyYmiQ5IZZMuZSvvzzPtZnLPLh/n5Z9exCkJlFXU83tm9eZuXyRqzNXyFRIkQrTsRj13L55natXLvHJ8Y9Jio9BLhby+ZlPuXPzBvfu3mFv027EGanUVlcyc+kiM5e+Z+bKFVQKKQqxkJGhAW5cm+Hm9ascOniAxLgYRBmpfHb6FNeuXOL2zRu0tzSTkZJIdUUZ12Yuc/G7b7h18wYVZSVIxQK6uju4ees6167P8PnnZxCK0sjKzqStfR8Wi+lnG/M7t2+j7+rgs09PcvXyJa5fu0Z+jgapKJ2Bvh7u3bnFnds3+fTUSdKSEpCJBZw7+xkzl77n+tUZNldVkJ6SSOu+Pdy8fpVrVy7z3bffIEhLRipM59jhQ9y6fo2bN67TYzGRmpSASiHlm6++5PLF73j44B51NZvJSEmkeU8jd27e4PrMFS6cP0dq0iYkgjQ+PnKYOzdvcP/uHaanJhGmJaPJlPPdX77m8sXveHDvLtsb6hGmJ9O0azvXZy5z9fIlvv/uWxRSMUqpiAOTE9y5dYPbt24yNTGOIDWJghwNX184x41rV3j44B6t+/agUcrYXl9D445tfHH28wXH7dvvv6V/ogfdaCf68W7MEwb6p3uo3l1BvDiGhpZaxLkC9uh3EyvcyKq45ezo2Erp1iKyq9R07m9jzaaVrIwLZ3f3DnZ1bWdjeiQt5r3sP9CL2WpwWv9+bhB1AN7PaRF1LMvrhrooqsunqC4fQVYagqw0pPkiavZU0ztpxjJuZOBgHwU1uZRtK6Z/usdZP2sZf8JIz6QBy4QB87ge0x2gWqAAACAASURBVLgOo1WLyarDPK7HPKGnZ9JIz7iBnjEdPWN6eq0Gp/rGjQxMWeifNGEe1aLb3067qZmmzkbqGmsoqy+joKoQdZEGcZYUZZ6aM2c/58xnZ3j3j79j6Yf/QvPepp/t9/L/xnLg4BRNLY1sbqimqraSsupSqmorqNpSQnllIWUV+ZSW5ZBfoCY7JxO1RolMJub77xf25Z5bDh89jDJfgTRfjEiTQUFxLtWVVdTUVDnBxLEk79ioVFZeSGFRDnn5GtRZCkQyASmCJMJWhhK6KpTQlaGs3bCWVGEqSo2CLfVbCAj1x93HjYBQf3yDfJwg91NANDg0hOBlofiF+eEf5MaKwPdIWfHPqFf/hqyV/x/Vib9jc+rvKYr5HeJlvyR9xZ+IDltCqK8bYcEhBAaHExgSSlBIICEh/gS/JhjPl2veL9h3FogmZySxZetmUsQpJKQlsHLtCpZHLCMwxJ+ojeuQyIQoMyWoNXLyC7IoKy2gqqqE2tpKGho2s21brTOLVW1tFZs3l1FRUURuoQpVoQRNiZKyzaU/mDVrbumxmMjOVqLSyMkuVJNTkkVZZT4VZblUVRaxeXMpNTXl1NRWsKWmkobttexu2sGNG283RvxbB9FHjx5RWFHO8ZOn3nbT/16A0dFRTpz4BEdo2mNHjzA4uJ/Bgf3OPMI3b9xAr9Oi03Vz7OhR57WnTp6gva2FluZ9XLOnX3327DlW6yg6bRcmo57n9jbu3LlDV1cHrS37ZmUMOX36UzraW2lu3sslewzJ58+fMzI8RFdnOz0WE8+e29q4fu0ael03nR1tHD360kJ+4sQn7NvbxL59e/juu++cbYyODNO8bw96XTcP7N/qHj58gNGgp7+/lyNHDjvb+OqrLzGZjExNTWKxmGhqanybwzyrzMzMsHlzFd9+a/OJuXv3LsNDAxj0Oo4cftmnTz89hba7k+bmvc7d5A8ePKC3x0JXZzsjwy/TkH7zzTc079tLW2sLn312xll/4MA0ne1tdHa0OZfSnj97Rm+vhfa2FoZdAvd/99237NvXRHtbK59/9pmz/uTJT+jqbKe1ZR/Xrl61tfH8Ofv7+9B2dzHi0sbMzBXa21sx6LWccfEhO3XyBPquLgb7+7h92+Zi8+D+fSbGRpkYHWV8ZJiGmi2c/fyHQPQbeq1mjFYt2rFOG/hMmJzg5AAvx5Kzc/l5ykzftNkGSZNGeqdMWCYM9EwasUwYMI7ZYMpk1Tt9KUsaCunoa8UybnzrIOoAyrn6qW3O9RHtm7LFN9UNdVG1q5zSrUXICyXICsTICyVsaapywuZcEJ23fxMGTJO6WTJOaDGMd8+SeUJLz7hulixWLRZrNz3jLz/rmzSxf7qH/sle+7J/Lz3WXrr7dbSZO2jYt42Y1Hji05PYGB/P+o3R7PuZMyvdvHGTU6dOodV209i4m8Y9u2nca1PTvkaa9jWyp7mJlvZm9jTvobltH21dbdy8dfNn7dfPVWauzrBnXyMN22qpqCqlyhlEPp+i4iyKCtUU5inJ1shs1lCVktaWlleCmf9QOXz0MNJsMZI8IaIsAYXlBZSWlFJdXc6Wmgpq66qcS/Nbaiqoqi6ltKyAvHwNWTlKZEoxaaJUktIT8Qn05v0l7+HuvRQ376UEhgWwcu0KNsRF4Rfsi6efBz6B3k4Y/fEQGkhQWCBBIUEELQvFNzQA3yAPwoM/IHXV+6jW/JGCyD9Qtuk98hP+BVXkH0gP/x1JK94nNsKbYH93AoOC8A9Zhn9oKAEhQQSF+BP0I0E0MCzAaen1DfLBw9edZavCiIyNZPna5XgGeLLYewmLPRfx4dL3Wbs+AqE4HZlCTKZKRm6ehuKSPKePb21dFbX11dTZIxbU1FZSVV1KeUUh2QUK5HlC1KUKymvKuH//9SyiAFevXiUzU4oqW0FmrhJVkZqcYjWFZRpKKnIpry6iaksJW2rKqaoqZW/TTvp6za8dIup1y08G0Tt37nDlyhVmrsxw5coMF776CmV+LkNWKzNXrzIzc5WrV226dv2are7qjP31hzTzBufNd/4C9TPznTPfNS9fr8zMcPWa/f2MTVdm5umfvf6NddVxfIXr1687gXK+MjIywvHjx3n69CkAT58+5enTpzx79oznz5/z4sULnj17xpMnT3j27ClPnjwBbCDy5MkTnj59yqNHj5z3cFz/4sULHj18yPPnz5169uwZjx8/cn7+/Plz27VPn/LwwQOePXtmv99TZ9uOfj158oTHjx85+/L40SNnPx4+fGg716V/jmufPHnCo4cPZ7X9+PFjZ/uO53v06BHPnz/n6dOnGAx6du/e9VN/lBcsly5doqK81LkMbRvbZzx79sz5vC9evLAFEH7x3Nnnp0+fOJ/1ub3Ptusf8+DBA548fmwf48fOsXn27BnP7e3OnaOnT5/y+Mljnj9/wYsXL5xj8vz5c5edki+c/XOMp2PMHOP45PFj53w62n306KF9jl7w/Pkznj59wnP7z9Rz+7M+evTImQ7w8sWL7NzawJkf8BH97uJ39IyZME/q0Y93YRjT2gLG28HONGYDSceysmlMj2FEi2G0G+NYF4bRLoxj3U6ZrFrM41pMVi0ma/e/GYgaRrToh7ud1te3AaELLc33TprpHuggf0sO+VtyEGSlkaZKRpSTQdWucmcf5oLovPeYMGCcnC3DhO4VmSb0WCYMs9QzaaB3yjhLPZMvrcI942Z6JiyYrSZMYxZGPrLS3a9Hka9CnqumZHMVOcVFjI5b3+rv4r379/j6L18zah2lflsdIqmQ5LQk4hPjSElPZlNaAnEpscSnxpGQFk9CWjyJGZtIl6aRJkklXZZGhiyd7y5+91b79W9Z+not7N61lS1bKqmqKqWyspiSkhzy81Xk5SrIyZKQqRQikwtJS0/h+PE3W508fOwwshwpkjwRiZIENPlqigqLKCzMo7g0j5JS29J/cUme0wqqyVIgkwsRilNJTE1gQ2wUqyMj8PL3ZKnXEtx93HDzXoqnnwdLvZawyP1DvAO8CAj1xzvAy7mMvVBMztcF0YAQf/xCg/AJC8QnxIfgwKWsC3yfWP93SQ35M4kh7xIf8i5xQb9nnc+vWeX3B9at8CY0xAe/IH8CQkPxDw0hICSYoJCAHw2ijuV5B2Q7/ESXeC5msZdNHgEeLPFazFLPxQSF+LMxJpLEpDjSM5KRSAWoNXJyclUUFuVQXJJHaVkBZeWFlJUXUlpWQEFhDvmFGiTKNDIyk9CUKamsq3gjEAXYu7cRVbYchUaGTCMhszATVbGSrHINBVV5lGwuonJLKVtqK9nWUMP5L86+UfuvU5wgevPmTZqamt64gb1795Kfl0dRYQGFpSVklRaQppEhz8+isLyEwuJCCooKyC3MR52XQ25RAbnFheT9NZUU2VRcSG7Rwuflupyfu0C9ox3n+7nnzP3M5TW/pIjswnzUudnkFReSU1jg7NPc63OLCsgqyPvrys8jpzCfnMJ8sgvyybYf5+bnUV1dzVW7FWu+Mjw8zJEjR5wAN7c4wMi1OEBkvvL8+av1rm04rnOAy8vrns9b7ygOAHr1fi/PdXzsgCrHseu5L148d/bJ8dGzZy/79+TJE9rb2392EC0pKeZzp/Vv9nO9ePFi3md98uTJvPPkWjf3eeeWhcZ3IQvHfPPp2j/HeM69n3Oe7SA69z5PnzyZFRbkyuXL7Nq2jTOnFwbR7y99z9CB/ejHuugcbkU/2m3LWDSidco4qntVY1qMY12zZAPPudL+m4CoY3ndsTz/ttpdyCLaPdBBTpWGnCoN6eoUNknjSFMlzwLRwUP9PwiixjE9xgkDxknjLBkmX4VT88Q8bgbjhldkGbeDqjN0lQnLuAX9sJGe8V4Mw2a+seeffmH/9zbK7Tu3+ejoR+xr24syR0FE1CpWb4ggYkMEK9YtJywilJWRKwhaHkhYRBjLVocRvmaZU2uj17A+dh2RceuJjFtHbHLM3zWInj37OfUNW6isKKGqqpTS0nwKi7LIzc1EkyNDoREikqUikwupqqpY8P+KhcqRY4dR5MmR5YtZFbOCFGEyhQWFFBbmUlCUTWFRDgWF2eQXZJGbpyYrW4lCKUYoSiUlPYH4xBjWRq12Lkkv8VyMp58HXv6eePi64xvkw7vv/ZE//Ms/E7rClsvdy9/zLSzNB+IX7It3iD/e4YF4hwXg4+eB39L3CP7gjwS/988EfPAHQt3fI8z9D/gt+jVei3+Pr/cHBIb44h/qj39oEP6hwTYQDQ4mOPT1wHihpXnvAC9Wrl2Bd4AXv/r9/+T9pe/jG+KLm68bS7yXsMRrCR4+7nj7erAyIpyY2CiSUxIQCFNRKMWoNXJy89TkF2Q5gbS4JI+i4lwKCrPJzVezMX4tm0TR5FZp7CD6+kvzYFvllMmFSOVCxPIM5Boxihwx6kIFuWVZFFbmU1xZQO22Gva2NL3VTUqO4gTRrVu38t57771xA5s3byYzU0mmRoVUk0m6RkqqRowoW4I6V4laI0ehliNQSonNSEWmUf1dSZ6lRqiQkSLKQJ6lRqrOdNbPd75EpXwtSe1yfa/SaMjNyeHy5csLjvfQ0BAHDhyYlUrOYQmd7xhmw8xsKHl5jut1DmskvARK1zYc1lVHe66w6mrFcxwv1Kf5rnNYduf2w2ENdW3D0b/29nZ27LCFiZmZmeHs52e5cP7Ca+v8ufO24wsXOH/+POfPnefLL7/k888+5/vvvufixYvk5+dz7ty5OeP3YpbmjrUriLqe47Bizn2Wue3+8Ny9mHc85ptz1/Ff6N4OyPyheXH9gnLxu+9pqKnjzOmXbgUAp06dYvu2bVRUlNPSvo+h6X5nHFHD2Kvg6bAwur63TOgxj2tf0f8uEHXcw+FO8HOAaKN2J72TZnonzQwc7EM72Ill3IhuqAvjqO7ldfbjuSDq2MTkkGXChGnChHHSjHHCrkkzpikLpkm7pmwyT1qwTFiwTJidMo+bMY4ZZ8lkNWCZNNgzTpkwj5swj5sxjBoxjJrY1rYDy0gf5769wJlzZzj1+UnOXDjDybMnOXn2JKfOneLU+VOcOn+SU+dP8un5U3x67hSfnjvJ6XOnOG0//vTcKT4+c4wjJ49w6osT6PfrqNm9mZrd1RTXFlGxrYyCzfkU1RRQWl9CaV2x7biumPL6cspqSqmoLaeiroLqrVXkl+WxLnYtGxM3EJ8WR4o4mYuXXt9n8m+tPHv2jH1Nu2nYUkVVaRFlhbnk5yhRqyUoMgWI5amkZsSTnpHEyMjwG7d/5NhhJFli5AUSgtcEEhUXSV5uHgUFOeQXZJFfkEVevoacXJXdD1Vus76mbWJTUgxR0etYsTocdx83lnotcVpEPXzd8fL35I//+gf+8z/+A7/5518THB7E6sgIW/51u5/oTwFR32BfPIP98AkPxHtZIG6+Hnh7ubMiOJBQb2/Cg4JYHhZCaIAXwX5uhAZ7s8TtfXwCvfBfFoBfWAD+oUF2EA0hODT4J4FoYFgAqyMjWOyxiF/893/kn37z31nkuQgPfw/c/dzx8PNgqedilrovIijEn8ioNSQmxZGWnohEmkGmSkp2TiY5uSrn5tzCohzbl4GCbHLzMwle5kNM2noKa3KpqCl/YxB99uwZJcX5iMVpiMSpyGXpaJQCcjVSivLVlJbkUFaaT31dNQemJ9/45+l1ihNE33vvPd555x0+c/E1e52ytWErUqkEeaYcsVqKMEtGijIdkVqATJmBTCFAohSTLhMRlZyAMFP+liVDmCm1v84vkUq2wHVyRCrFrDqB8zo5gkwZIpWCVKmI+PQUxGolQpUcsVqJVKNEqJLZpJa9PFbJEKikCDKlCJRSMpSSeZWuFJOusMt+LFFK0WSpOXHiE+cy7twyMDDA1NTULBB1tY65wttCVsv5IMexHO9ow1Ee25dxXaHEdSnY9TrH0rKjjflA1BVq54PSha578uTJvGD1+PFjGhsbqampAaCrqxOVRoVELkYis0v+UmKXOrH9/XzKEGegUMmpqa/hu+++Iycnh08//XTW+C0EiPOB6A/B4A+1N3e+Fjp2lL/25WO+e7948cL58/ZDXyxcLaKXLl5kS1U1p0/Njk144pNP+PDPf+a//D//idLyQg6dmkY/9hJEFwI9/XC3c/nbZNXOWpJ3XZqfLd3PA6JWO/jZU4G29zbT3teCYVSL2fr2AHc+EHXCuN0yaRp7uVmqZ8KEyWrAaNUzcLCPwppcyu3hm8wOa6bVYNO4EZMdQB2vhnEzluleeg/203OgD8t0H5apPizTvfRM9dIz3UvvgT56pm3HPVO99Ez2YJnssR1P9dAzbaZn2kyvPRuWacKAwWqgc6CLrKocqptq+ejzo4wfHsN6eIyJo+OMHh5m9OggI0cHGT42yNDH+xn8uJ+hj/sZPjbIyNGhlzo2xOjHw3QPddDR38rEiTGGPtrP4KH9DBzsY+BgPwMH+xg8tJ+hj/YzfHiA/Qdswf6HDw8weHA/g9P7GTwwwNDBQSY+ttKib2Zt3Go2pmwgVZaCRCXm4uWL/D2XqakJamurKC3Kozgvi9xsBUqFELEslXTJJpIF8Ujlwh9cXVuoHDl2BEmWGGWRjKDVAQSFB6JWqcnPzyYn1wZFmiwFmSopykwJUpmADEEymxJjiI2PInLDGoKWBeLmvRQPX3fcfdzw8vd0WkXdfdxY5P4hHr7uePi6syEuirCVoXgHeDl3n8/Va4NoiD/eoQH4hAfiuSwA9wAf/nXRe/z5z3/Cy8uTFatWEB6xHP/AABYvXswf/+Vd3n3/XbyDffAND8BvmT/+YQEEhAYRFBJMYGjQa/cnINSf4PCgWcvyUbGRhEcsw817KYs9FrHI/QPcfN1w93Nnqc9S3HzccPNyY4nbh7h5LCZi9XJiYqNISo5HIExBLEl3WkazspXk5KrIy9fY4VSNUJyKu8+HxKZHkb85+0eBKMDw0H7SkuMRC1MQS1KRZaajzpGSX2gL7bS5upSazRXMzFx547Zfp7wD8NlnnzlTlGVnZ79RAw0NDUikQmSZIqRKIdJMERJlBlKlAHmmAJlSgEwpJF2UTExSDGKl9DUle6VOkimzZfhw1kkQKUWIlEKECoFdQnsGEAkSlRhxphixSow4U4JYKUWkkCJSSBDKJfO2KVBKyFCIyciUkCITkK4UkyIVkCBMIUMpIUmSQYpMSKo8g9TMVFKUqaQoU0hWpJAsTyZZkUyKIplUZSppqjTSVelkaDLIULtogffSXCnZRVmc/PQEtxeIwdrX18fY2NiCIDqfpWwhKHE9Z65F1FFcl9hdz53PguYKlwvBluu5rsDjsLbNtYg6jh8/fjxve0+ePKG2tpbq6moAdAYtOWXZyAulKApkKApkyF2kmCXpnPcyFIUylIUyZHli1KVKandv4bvvvkOpVPLxxx/PGu/XgT5XEP1rY/PXLJ8LHbvOlytczgfHrvd2Pc/Vcjvfc80F0W+++YbS0lJOnZq9KfGLzz5n6R/+xD/9w39mW30N059MY7Da8r+/GajpXF51sz+zvnxvthqcQfI7+lp/uv+mVTcLds3jWlosTbT0NKEb7nj52VsG0SbdLucSu8MCOp8/qsGqRz9uB9HNOVTvKqdjoJ2S7cXU7K5ia+Nm6nZVUrmtmK7BNnomjZgnDJjGDRjHDZTuKEZTpaagPp+82jxy6/IoqM8jvyaLwrpcSrcVUNyQT/n2Yqp2lVG3t5qapipqmqrY3FhJ7d5qKnaWklOdSV1zJSZrF7qRdroG2siuzKJ0axn7DwxiGjVgHjNiGnX038W/dvyljOM2P1WjXYYJHZZpIzv129ih3YppSo9hXGd3DXCNXmBw1jnA3Ww1YLDq0Fm70Fu1mKx69h/spbFrFyuiVrBhUxTp0jQkSjEXL/19g+j169eora2muqyYfLWCPJWMTFkGEnEy6cJ4UgQJ7Nn74zZwHj52BGm2BGWRjJB1QXj4uSPIEJCdrUKllpKVrSQ7JxOFUoxMLkQkTiMtPdEOohtYH7Ua30AflnovcYKoh6+7E0S9A7zwDfJxBrMPWxnKhrgofIN8nEHg5+r1QDQIv5Bg/MKC8VkWiHeYPx5BPvz5w3/l/cUfEBASgFegJ24B7nj5+7PI3ZPf/+lPvO+2CL9QG4TaQNSfgNAAAkOCCAh91dI5H4i6WkEdG6+WrQpjY/wG53P6BvngHejttIa6+brh5rMUDx93PLyWstR9EaHLgoiOXk9iUixp6YkIhClIZQIyVVI0WQqyczKd7hDKTAnrIlex1PsD4gUbyKvKoqL2x4Ho9evXUIgFCJLiEYqSECpTkWeJySrIJL84i9LKwp81Vvc7AAqFwgmiv/jFL96ogfr6+tkg6pQIWaYYif19uiiZ2KRoGxi+liT2NHIyxJkSBHIhYqXtM5FShFAuRCAXIM4U2YHTBqQCWQZipQipWuKsF2eKEMht2UMyZAIyZI5Xe0YRmQ1gRUoRAqWI9EwRArUEgUqMJFuOSCMlI1NEdlkemtJcNCW5qEuyya7KJn9LHiUNxVTurGBzYzVbmjZTu7eGra0N7OzcQZNuN7u7d72ivYYm9hn3zlKLsRnDfgOXrlzi8eP5LaJarZadO3cuaDF922UhX8R/6/JD/VAoFGg0GgCmD01jGjbS0ddCu0O9LpqvzkWtln20WvbR3ttC92AHvVYzly9dYt26dVgsljfu89/K+P218jq7IF3POXXqFGlpaZw5M3tp/szpz3F/z4f/8V9/TV39VqxHprGMWegZ0WEe1b0VgHPVWwVRq95lI9RLdQ200D3YinGs66WLwFw4fgsg2jdl+avXGK169BOzQbR9sJ3N+zbT1LmD1s6dNHfsoHJ7CZ37W+id0mOxb0bqmzYTLdzAh0EfELDOj+ANIQRvCCZsQwjLo0NZER3KqpgwVsctJyppDWvjV7I6djkRsctZvymCNfERrIpbxbINYSwN/pBUVQJ90wb0Ix209+0jpzqLsm3l9E/vxzT26jy86odqxDShxzipmyXLATuI6rZinjZgmNBiGn+9eK7GCT3d4x3orF2YJ20brLa3bWV1TARRCZGkClMQy0TOiB9/z0Xb3MyW7GyKBELy01LJSkpEsSkWcfwGUmOjXju3/Nxy+NhhpNkSFIVSlkWGsshzEZHr16NWK1GpbVZQV7/Q9IwkklPi2ZQYQ3TsesJXhuLmvZQlnotnLck7QNQBoz6B3k7LYWTMelauXYFvkM9PAlH/4FACQkLxDw3EN8QX70BvvP29iVgXQboojYiolazasILoxASiExLxDQrENygA/9BA/EJsEGoD0YU1H4gGhgUQsjzYBpv2TVjRCRsJj1iGu4+b8zk9/Dzw8PeYBaPu3m54+3rg5rEYLx931keuJj4hmsSkWFLTNiESpyFXiMhUSVGpZWTnZJKdk4lAmEJgsDfuPh/+ZBAFaNq+jbToKMSJcUgTY1GlJ5MtFZCbKSVHI+fEyZ8vJOc7AP/wD//gBNF33nmHsbGx126gvr4esVSELFOCRClBohTbJUGaKXUep4nSiE2MRaQSv5aEmSIkaglSjRSRSkS6PAOhUogwU4QoU2SzcqolCJQCBMoMhEoBQqWAdHkaaTLb7kiH0mSpCJUCpBoJihw56kIV2cVZFFTkU1ZbSvW2KrbuaWB36y6auprYp2+m1dRGm7kd/aCBZkML1Ts309XXjWHIiHHYhHHY5qhvmbDtHrWMv3x1yGw1LSjTmBHjqGGW9k/1Mzw19IO5Ynfs2EFSUhLffvst169fd0YkuHr1KteuXbNFMJiZ4dq1a8zMzHD16lVnnaPe8dnly5ed58zMzDjPc329dOmS83xnxIArV5zXurZz+fJl57UXL16c1c6VK1dm9clxrmtbjuPLly/P6tPVq1e5ePHiK9deu3aN77//nujoaBQKBS9evOCTU58wOL0f3XAXuqEfJ+1gJ7qhLvqmLIwdGeHS5Ut4eXlRWVk5q0+O53cdY8dnV69e5fvvbf6ljj7PNx9zx9vxuWs7rmM9n1z7c+nSpVfm01HnGF/H+a5j7Th23Hu+di9dusTMzAzXr1+nt7eXlStXOt0VHOXLC39h0Xve/Nd//DUNO3czdfwwpkEjfYPdWEb+PkHUMNrphNC/VRDdqdtBu2kf7d270VlaqW2qoqOvmd4pgxNE+6ctrE9Zw28//DUfBLzPkpClLA1xY7HfIjyCluIb5oXfMm8Cwn0JXO6LX5gXgSt9CVrlT/CqANwDPVgS4I1HmA9/WPpHBNnp9B8woxvupMWyh9xqDeXby+idnH8X/78FiJomDU4Q7Zk2Y7LqadhXx9rYNUTGrScpPRGhRPB/BIgeGRsnI3QFouDlpPsGkezpR4KHFxvd3MhKSfnR7TpAVFYgITwqjMWeiwgJDkEul5CTq0ImFyJXiFAoxWQIkklMiiU+YSMxsZGsXbcS/0BvFrl/+Fog6rAUBi0LJDYxhtAVIfNaRV8PRIMJDAojKDiUwJBA/IN88Q/0xdfPj/DlK5AppMTEbyBuUxTJ6UkkpaXi4eOFl58vASFB+AcHEhBqs276L/PFf5kvAWGv9mUhEHUE5PcN8mHthjVEJ2zE3ccNn0BvvPw98Qn0xt3XHc9ALzwDPF/6ifq44e3jjrvnEpa6L2L5ilCiY9YTGxfFpsQYp7+oXCFCrhCh1sjRZClISIjGP9ALD99FxGf8dBA98fHHrPL1IdLNg4SlHiR5+5ESGEJSaBjq5CTu3v75MmW+09/fPwtC33nnHTZu3PjaDdTX1yOSiZFmypAopbPkWpcmSicmKQ6hSvwaEiHIFNolsEtIqiyVFGkKKdJUUmVppMrTSJGmkKFMR54rQ12kQl2kIq8yj5LaYqq2VVLfVMf25m3s6W6kzbSXzp5W9ANdmIb19IwZ6Rkz0Tduom/cTP+Ehf4JC32TFvomezCPGeidMNPZ18bWljrMYwbMXwYWEAAAIABJREFUYwaMwzoMQzoMI3qMowb7t3/jHLjUu8jwigwjegwjOhfp6Z/owzJk5vyX57l46SIXL13kyswVrly5zJUZGxxIpVICAgLYunUrBoMBs9mMyWSiq6sLk8mETqdDq9Wi0+no6upCr9djNBrRarVYLBY6Ojro7u7GbDY7z3V83tnZidFopLu7m66uLmcbWq0WvV5PZ2cner0enU5HS0sLer0ek8lEa2sr3d3d6HQ62tvb6erqoq2tzVnX0dFBW1ub81iv19PR0eHsi8FgcB53d3c7+6TT6Whubna25+hDW1sb7e3t6HQ6Ghsb8fX1xd/fn2+++YYTpz6hb7yX7oGOH6XO/jbaeprp7G/DOKZj6MB+JqcnefdPfyIlJYW2tjY6Ozudz6TVap19djyHVqtFq9XS3t5Oe3s7er3e+d5oNDrHyHGdY54c4+Nos7OzE51Oh16vd57vGCfHXLe1tWEwGJxj55gzx/y5qrOz85U2HXPvaN9xvclkctYbDAba2tro6OhAp9NhMpnIyMjAz88Pg17Pvbv3uHTpEpcvX+LA9CQei9/jF//4DxSU5jDxyTiGYR2mQS3mtwyhbx1Ex/T2pfnZIPrqpqmfZ2n+x4Jox1AHda215JRlkpi2gS1bS9nRVk/3YCs9k3aL6LiBvikLm6Rx/KvXn3nP+z1+/+H/4g9L3uVPH/6J9xf/K+5eSwlbHsyKNeHEJ8WQW5hFZV05W7ZWUb+rhsLqMkrrGqjasZXA1cuQFcjpnbSgHeygtWcv2ZVqSrcW0zs5/3PMC44TBoyTehfpsBww2UF0mx1EXy7Nvw6I6ia7bAkUJm27/7e11BOxcRXrY9eRnJGEUCLg4sW/fxC9cPZzjI1NNBWWsLeohKb8QnYX5LM1L4t9DXU8ePDjgOSIfWlemi8iPCoMDz93/P38id4YiUotQ64QIZUJkEgzSEtPJD5hIxtj1hO1YQ3hy4Px9F7KYvdFTgj9ayDqH+KHd4AXazesIS4pdl6r6JuAaHBwKMHBgQQG+REY6E9AQBARq9aTm5tPfFw0iYkxpAuSEErS8fLxxD8ggOCQEAKDgwgMeQmifst8CAjzfS0QDVke7KwPDg8iLimWgFB/PP08nM/n7uNmGwMXEPXw98DDDqEeXktx91yCf4APURvWsDF6HbFxUSSnxCMUpSKVCZwwKpFmEB4ejH+gF+6+b8cieubECeoK8tmWncOO7Cx2F+bTWFpKY2U5hpZ9PHZxB3zb5Z3Vq1e/AqL/4T/8h1k+iD9UGhoabBs85vPzdPG9TBWlE50Ug1Alskltf1XZgDNDKSBdkUGaPJ00eRrpijTS5MmkyVMQqYUo8+VklajJr8yjrK6ELbuqadhTz87WHezT7qWrpxPjoB7joIFeaw/94330WXvpHevBMmrGMmrAMqpzZhDpGdNjGdXZpcU8osUyosU40o1+pAvjmBbDSBeWCQMd/S1sba3BZNVhGNOiG+7EMKrF4b9mGNU6N1u4hqb5oRA1hpHuWdKPdNNrtdBubCMmMZp1MWvZlJpAcloSicmbEIgy6Ohop6KigubmZg4dOsT9+/e5d+8ed+7ccR7fvXuXe/fuOXX37l3u37/P3bt3nZ+5nn/nzp1Z17m2c/fuXW7fvu38zPX6W7duzTrP9fjBgwfcvn2b27dvv9K243737t1ztn379m1ne3fu3OHu3bvcuXPHef29e/e4efOm81rXPl+7do3ExEREIhGPHz3m2PGj9E/8eBDVDXXRtb+dzv42eiZMjH40xNd/+Yrly5fT3Nzs7O/cfrjKUX/r1i1u3rw567P79+9z69Yt55g42po7R66vt2/fdo6d63y63vv+/fvOuXOtf/jwobNPjns7jh3t3b17l5s3b87qg+uz3L9/n9u3bzuf5d69e+h0OpqamqitrWPb9t1ExUSzKSWa2Jgw1oa/x7u/+Y+sWe9Jz3QnhikD3WMGDH83IPqqjGM2ObISmd7CpqW3CaL1bXWoi+TEbFrD5vpiGppr6NzfjGVKZ49CYMtbL84R4h3mzfueH/CPv/oF//13/4Nf/f43/PKXv+S3v/0NwcGBbIyOQqVRsq91D536Dlo696G3aOk06tnVrmVnWycRcRtQFKjoneyle6CTjv4WNBWZFNcXLBjXdCEQNdl9WB3HPdNmdul2sFO7nZ5pM0arrf+ODVvzZat6CaJ6jNM2y6rBqqN32szO9u2Er1tGVLxtaV4kFf7dg+jdu3f56usvOXvmNF+cPMEXJ07w6dEjfHzwAIenJjg0NcHk5MSPcuE6evwo8lwZsgIJyyJD8QzwxN/Pn7DQIITCVCcIpQuSSEyOJTYuiujo9axdu4KAAC/cPRbP2ik/1z/UAaE+gd54B3g5YTQwLIDYxBhClgc7/S7fNKRToH2DUVCoPwHBfgQE++Hh5cG6yEiKS4qJid1IQmIMacJkNLkqfAO88Qvywz/In4CQgJc+oWF+BIT5Ehjm/1oblRz1jg1K66PXOSMBOPxhPXzdbc8faBsDVzhf7L4Id++lePi44enjzvKIZazZEEFk7DoSE2MQpCchFaSSKRWiyZSStCkGXz8P/IN98fB3IzbdBqLltWXOZDBvUq5cucJgXy9Hp6c4MjHBJ4cOcvr4MT4/dZKzZz7lqwvn+P67b+cND/k2yjsHDx5kbGzsFd28+XqZJ+rq6xHLJIgypfbd61KEmRIESgkCpRihUoJELSdDIWJjciwZmRmkKVJJkaWQLEsmWZZMqiIVgUqANFdKZlEmWWVZVO0op27PZnZ2bKPVtJfu/R0Yh3WYRvVYxgz2fMlmesct9I5b6LGasYyZMI8YMY0YZmvYgGlUi2m066VGOjGNdmEe655VbxjtRDfagdYu86SOlr491LVtxjihxTihRTfWid7aZY93+DrSvSL9SNcr6rGa6DR3sCwiDJ9gb1asWc7KNStYvjKc9ZHraG1tcVrlzp9fOMf32ywL+Q7+NZ/Ct+0b+UP3i4uLQ6lUAvDxJ8cYnO7/0cvy3QMdzqV5y4QR69ERrl6dITg4mObm5jfu85vEAP3fWd60T+Pj42zbthWhUERl1RZCV4WzYl0QISHvszb8X/jjb/4jIeHv0zPdhnZKS9e4HoPVgHF09hezvzkQ/TfUW1uaH2invq2Ovd272Nu2jVZtI1saK2nr24NxohvDuBbzuJ7eCTOKfDn+y/x43+0D/t9f/jd+/b9+x69/8zt+/T9/yy//6VesWhVBUlIS+fm5dHS3Y9lvwrTfiGXIgrbXzG47iEYlx6MsUtM72YtuqJuO/hayq9RU7Chl4GDfa4Oo2Wqw/T0c7nae0zdtoUm/ix0dW+mbtmXe6pm0AahjjHonzbZoAXOg1Dihd1pEDeM6Bg71sbtzB2Frw1gfu46k9EQyROl/9yB68eJFrl27xpkzZzh+/DinT5/m6NGjjE9MMDwywsTkBBaLxZkV7U3KR0c/cvqIhkWG4uazlAD/AHx9PImP24BMlIYgMY6MuBgyYqOJW7uayFXLiVgegrfXUptlz8dt3k1KDgB1wJlj45IjoP3KtStISIl3Apx/iN8bhW9yzfnuyPfu5r2U9dHrKCovJDphI7GJMSRnJJFblDOrP6/rD7qQfAK9Wb46nMS0TfgF+856Tsezegd44RMwG0S9A7zwCvDCw9edxXZ3Br8gH1ZHhBO1dhWJUesRxMYgjY9HmhCPNCWJ9atX4OPviV+IDx5+biQIY8mt0rBlW9WPsogeO3aMickJxqxWRkZHmJyc5OPjx/n00085ceIE58+f59y5cz/a2vrXyk/OrFRbW4tUIUWeo0CoEpOhFJBh9+XMUApIk6WToRCQLs9gQ3I04hwJsnwZmvIsShtKqdtbR2N3E3sN++jo7UQ3pMc0arItj0+Z6Z000TNhS+1ntrpYLMbsga+dy9+O/9z082ts/pAwc2UY60Y71kX3aCfdo50YJ/Xs691DbdsWZyYS7VgX+tdo64ekH+l8RT1WEx2mdsJWheIV6EnYqlBWrl5B+IplJGyK59q1a1RUVJCens79+/d58eIFN27cmOVT+uKFLcPP7du3XwnZ5LBuudY9ffqUmzdvvuKX+ujRI+7cufPKrnmHFW1uoPtbt245Qz05znVY2OZCjqMfrru9nz59yu3bt3loz+7kaPvJkyfcunWLR48ezWr73r17PHz4kMePH7N+/XqEQiEAxz459pN8RLWDnRhHdXT2t9E3bWHko2EuX7nM4sWLnbFKHWMzN1rBnTt3ePDgwazd7A8fPuTmzZuzxvHp06dOi+N8YzN3NeLp06fcuHFj1rfRFy9ezDu+L1684Pbt2698K3adI9cd+w8ePODOnTvOOK2OKAi3bt3i/v37syIYOJ4FYHp6Gn9/f86cPsOB6WnWrF3Nsohl+AV4Er7Mjz/88Z+I3BRB3yELhkkd+tHOVyD0bxNEDW+gvw0Q7RjsoKG9nn3a3TR37KC5cyf1+zbT1rcHw0TXSxAdt6ApVhEWEcYSTzd+9dvf8stf/Zb/+cvf8ptf/Z7f/Pp3rFq5GqFISGFpITqLlv3W/fSN9dE30ceujr0oC4vILCogLHIlmvIseibM6IY6nSBaubOcgYP9rw2iljETPVYTvRMW+id7GD40yPChAfbqm9jduZOBA/0MHhxg/3Svc25dY7m+3EX/eiCamLbp/wgQffDggdN3+8aNG1y9do1Lly7xzbff8tVXX3H+/Hm++eabNw5mDzYQFWtEyAskhK0PYYnXEgIDAwkK9ifA34uIQH+i/PzZ6OlLxHuLWPH+IoI/+BDPD99j0eJ/xTvA0+YLuYAV1DfIx5mH3QGLjvd+wb7EJsawfHU4weFBBIcHOS2kPxZE3X3ciIxZT1F5IRvjNxCzKZrkjCRyCrPfOojGJsYQsX6VMxSVwwfWcR9XOWDU4brgAFM376V4eiwh6P33Wfb+h6xatJT1Ht5s8PFnnY8fa4ID8fFcSmCYP0Erg/AO9CBZusm+NF/KvXt333jOr1+/zpdffsWFCxf4+uuv+fbbb7l8+eU+hStXrnDjxo0fzPr4U8pPBtG6ujoEkgxSFakkihNIFCWQpkhFpBGgyJeTU55N5dZyNu+oIq8ql679XeiGdJjGTJitZtuGH7vMVjNmqxnTmNG2ND7a5ZR+pHMeoFsgM8uC2Vr+uvRjWrRj3XSPdtE92oVx0sC+3r3UttVgmNBjmNCjHetGZ301+8ubSD/S8YoWAtFVq1eyMWYD9+7fo6qqiuTkZK5ds+WK1+l03Lp1a9acfPPNN/T3978yV+Pj45w9Ozs915MnTzCbzTx69IgLFy4wMDDAxYsX+fbbb+nr63uljcHBQU7Pyabz/PlzOjs7uX79+qz6L774gsFBW17zQ4cOMTg4yKNHj/joo4/mTTtnNpu5dOnSrLrbt2+j1+tfWWKanp7m+PHjvHjxgo0bNxITE8OjR484duIYA1M/zSKqG+qio6+V3ikzQwcH+PovX+Pp6Ul+fj5gs0b09PS80v/R0dFX4vDeunWLrq6uV+DyxIkTTE5OOq8bGBjgxYsXWK3WV6zdjx49oq+vj3v3Zme0OHPmDAcOHHilH0NDQ/zlL3/h/v379Pb2cvLkSR4+fEhPT88r32hPnjyJ1fpqGsaBgQGXTFK2cuPGDQwGA2ALIxYSEsKRI0f4+MhhIteuJTh8OX7By1i3IZ7IuE2Ic9Xoxy225VZrF8aRrjlfGv8WQdT4mvobAtGhDrZ2NLCnayd7Wreyt20bDc01tPa6gqiB3nELmXlKgsODWRGxivj4ROLjkkhKTCM5KY2E+EQ2bIwmXSwgXZZOTFocSfIUEqSbSJDFsSE9hvVJsaxP2kjgmmDyt+RimdCjG+5wAdEKBg7uf20QNQzpMI8aMY+aaOzaxa6OHbRbWtnVvoOd7dvp6Gljd+dOGrt3OufaEQZqviX6/1tA9OcsR44dQZYjRV4oJSwyBDdfNwICAvD19yZy/So0IgE1mRq2KzVsk6rYIpZTLJaglggJCQtgieeiV3xBfwhCXUHUJ9CbsJWhJGcksWxVGIFhAW+U9nM+EPXwdXeC6Ia4qJ8FRH0CvVkdGUFCSjxe/p7ODVeO53KFUdflegek+wX74unngYevO0s8FxMXHUmxUERphogqkYw6pZqGrBzKZDKU6akEB/niE+SN3zJ/3H2XEpMaRcGWHCrryn60b/D/zvKTQbS+vh65WkJOpZqCLbY/jLs6ttFi2oNusBOL1UDfpBntQAfVuyvon+7DZDWhH9ahH7H/4bcaMY7ZNvDohrVoh7rQj3aiH+2YJeNY5xx1vRmMLmQtdZF+TI92VEf3iJbuUS3GCRP7epupba3DMGHEMG5EO6ZDN6a3w/DPB6LLVoWxImI5a9evISYumhs3btDW1kZmZib9/f2cOXOG5uZmjh07xoULF/jyyy+5cOECVquV5uZmzpw546w/f/4cnZ2djIyMcO7cOb766iu+/PJLjh8/TmtrK6dOnUKr1bJ9+3Y6OjqYnJykubmZ06dPc/78eb744gvOnTtHa2srg4ODfP75585MRB9//DG7d+/m4MGDnDt3zpad6Px5hoaGaGtr48SJE+Tl5VFcXIzVasVkMmE2mTh79qzz/FOnTrJ3717Gx8edywBffvkl09PTNDY28umnn3Lu3DnO2fthNpkwmUwcOHAAiURCfn4+z5494+SnJ2xL8z/SIqof6XZuWuqbtjB9cpLvv/+exMRE1Go1x48fd47v6dOn+frrr53P0NLSQv/+fs6dP8df/vIXLly4wNTUFI2NjRw7dowvv/ySr776irNnzzo3Gx05coS8vDxyc3M5ePAgWq2W4eFh5/M7xtcxz445PnfuHPv7++ns7OSLL75w1n/++ee0tbUxNTXFxMQ4tbU11NTUcOzYMVpbWzl8+LBzfs6dO0dvby+dnR2cPv2p856fffYZXV1dDA4OOtv+6quvOHjwIDt27ODUqVNUVlYiEAg4e/YsBw9Osy5qLUHLlxG8LJzI9dFERkUjyJTQOaLDOG3AZO20f5n8dxB9+xbRdrZ2NNBm3EOnfg8d+j1sbamlpW8OiFrN5JbkELE2gk2JSUhEcgSpEjLSxEilCpQqNXGJmxDIhZQ3VCArkCMulCAsECIpFiMpliIrkCHKEREviaF0Wz6WiW50w+12ENVQubOSgYOD847PQhbRvoke9un3EB4Vxi9++4+ER4Wxq2MHuzt3siY+gv/6m/9C0Bp/9hoa2X+g1znvC4Vv+ncQ/Wnl3v171O6qQVWqZFlkKN5B3nh7eROfEIvJ1M20dYQj41aOjY1xZGiYYYOBPl03vWY95ZXF+Af74mnfJe4Knj9kCXW8d+w+3xAXRWTM+jfOPz8fiHr6eRAVG+m0iEYnbHzrIBoYFkBCSjzLV4c7N2E5Yoo6ntMBoHPB1AHsHr7uLHL/kKjYSPY1NzJgNDCo1zFmMXNoaIjj4+McGhlmbH8fO7bXEbIsEP8QP7wC3IkXxFBcl8/o1MjfpOvXXys/GUT1Bh2t2mYsVj094wb6p8wMHOyhb9JI74SBvkkTvZNGuve3Ub6tGMOYAd2onu5hLdoRHbpRvVPaER3aER3dw912P8zZ0lk7XqnTW7ttmVvGuu3H2gWkRz9mRD9qtL06jkdfrdOOGOge1tM9osc4bqG5p5XalgYM42YMVhPaUQP6McMcEO1e4P38dbbl+I5ZrxariXZTO2ERdhCNCGP56uWsiFhBXEIsN27e5NChQzTUNyAQCklI2IRKpSIxMRGlUklBQSFKpRKBQEBmpoqUlBSysrLJy8sjPT0DpVKJWCwhPT2DgoJCNBoNSUnJaDQaEhISkEql1NbWkpiYSGJiIpmZmaSmpqLRaFCpVKSlpaFQKEhLS0cgFJKdnYNCoSA5OZnMTBWbNiUik8nQaLIQiUQIBAJkMhkxsbHk5uZSWlpKTEwMUqkUgUCASCSioKCAvLw8kpNTUKlUzr7n5xegUCicz5iRkYE6S0NOXi5CkQixREJqejrrIyOpra3FYDDw/fffYzAb2D9ps4jqB7vRD3ajG3qpuXWvnDPYhXbQZhk1Ww00G/Zi6jH9/+y993Nc6Xnv+Rfs1paDLEuykmXJmsQcZjjMIJHRuRs5EbkDGp3RyACRCRAkQYBERucAdCPnDBIEwDDBktO1XHu95VhXkuuWZh001md/aADDNDMczcxKsuat+hb6nD7hPQHnfPp5n0B/fz81NZf3rK8lJaUUFCipqqqmpuYyKpUao9GIWq1GW6ilrjZ0fgvyCyguLkapVFJcXExNdTWFmkIMBgM6nZ6UlFSampqpra0jLS0ds9mCSqVCr9dTW1uH1WolJyeHkpISVGo1xcXFVFdXo1Zr0Ol0oX0UFFBTU0N5eTkFBUrMZjOawkLUajU3Ozowm81kZl6itLSMwsIirNZSKioqMRiM6HR6jEYTOTm5VFRUUV1dQ15ePsXFJeh0enQ6PZcv11JVFbpGFouFlJQUzGYzHR2d/N3f/T+s3V0nPiMBUbyI2LgIoi+c5vUjr6DSXWJme4qhjSGG1v0EV579cfgFiO6A6FAPU+sTHySCXw5l3nhmvdVgCEQ3p6i9VrXjI+ritrcT9+gg7qE+fMFBbg624ZyxEVzzM7LqDwX7rIxT3VhFdkE2JaWl5OYoKchVk5+nQlNUhEZXRIFWhbZEh33EjmfajWPagX3WgW3Ohn3Gjn1sgC5vB3U3K2jpqWVs1cfwgmsPRFu7Wz8ZiK6MMrcxg2vMQZQ8gt/75u8gSIrFOWqn230bQVIsX/r27xMhu/AEiH4YjI6sBRheC70L9kDU0/0EiGr0mt/4hPafZ/vFL35Br7OH0qZi5JlSLsZc4Py5c9TX1fLg4RZ3N9fZ2LzD8voyI5MjBMcCePxugiND2O0DJCUr9mrKP67nWUIfT9W0C5ERseHEiKLJ1+QhlAk+MkDowwKJHi+5GRZ5nkt5mdRfqSMpPZG0rFTy1LlU11ftWSR3+/GiVZR2oTlWHENkXMTedi9GX9hL4fQ4DD8O44/rcRCNiA3nXPhZTCVGxmZG8Y74cAc8BMYCzC/OsrmxzsadVe5vbbC6ukh8opyw8HOcuXiKbG0mzbfq+bO/fPdXffv8Uu1Tg+jE/Bj+GQ8zdye4MdiGpc6ItlzFbXcHk+ujBBdDaVs8U06abzeEftUvBwguDhHY0UcNpweXhwguDRFc2qlV/Yy8jKx4Qlr2PAV9Q09ZTD/eIhpcHCawOExwKcDQgp/R1RFck05u2K8TXAoQXAowvDhEcHE38OipfTyzz+ctM0xg0U9gwReKtl/0EVjwMbk6jnPUhSBRyLmY88TFC5AkhkqSpV1K42fvvYfP7yPz0iXGJyYYHZvgypU2fP5hZufmmZiYZH5hEbvdRUfHbUbHJpifX2RuboGpqWk6O2/T2zvAzMwsE5NTzM7OEQgEaW1tY2x0jJsdHSQkJmOz2XG6XLS1XWdkdJT5hUVmZmYZH5/g2vUb3LrdzczsHDMzs0zPzDIyMkpDQzMej4/Z2XmmpqaZmJxicNDGlZZWpqanUWsKUarUzMzMcqO9g47OW4yNTTA5Nc309AxDw0Gam1txOF3MzMwxMjLKxMQULreXxsYr+IeGmJ2fZ25xkcmZGdputHOjs5PAyCgSqZwrLS388Id/TsOVZiZXpgjODROYHWZ4ZoihaT+B2WGCc8MEZ0MKzIW0N72nob31xpZGuDnQTllNGVlZeZjNVubmFujtG6C19Rpj4xPMzs4xO7fA1PQMrS1X6e8bYGFuganJKSbHJ3A5XFxpvEIwEGR+dp6Z6Rmmp6bpvNXFjfYOxsbHSc/IwmQqZnZ2ntar1+nrH2Rufp7p6VlmZucYHg7Q0noVn9/P7Nwck5NTzM7N0d3TS1d3LxOTk0xPzzI1Nc3k1AwtV6/hcnvw+fxIZfFcv3GTYHCUK1faGA6MMDu7yPT0HNPTc/T0DNLe3sX09Dxzc4vMzMwzPT1H69UbdHf3MTe3wMzsPDMzczidbpqaWxgfn6S6pg6ZPIH/+T//ju3tLZJS4pHHS4iODefMuRO8cuC7FOhzmNuaZWjJj2/JH6qu9BmDaHBxiLGVIHXtNTjHbXtDtsHFoSeW+bT7+bTaPd7Hh5R3S3qmqpIYHOpjbn2W8YUxxhfHGF8aY2J5jOk7k4yv7vhErgQYWQ0wshpkenOK2vZqWrqbcE86sI/009xeh0AWTm1TKdduN+ObcTK2FmB0OVQGdWx5lLKmMrK0OZTUlpGrVaIx6VDrNWiNhRisBrTFhegrihgI9uGYtDE41cfATC/9M90MTPVgG+2l23eTK911XBtoIrDopj9wG8d4H5VXS2juqmd+e/qFUi3tDs3P3JnCO+kmLjGGL3/nSwiT43CM2Oj1diNOFfIHf/z7RMdHYBvpZ3J9bO/Hx3Oj5leDBFcDhDIcBJm7N0Oftw9xkoSkrFRy1QWodEX8/RcW0Q9tf/6XP6SpvQF9VdFesFJMdAzpqamYLSZ0Jh0aUxFKYyHpymyy1Hmk5WSQr8onNzcboTCG8Mesgo9bAZ8G06ctkLtAGBkXQUJqPNkFWXvLPQ2ITwPtLhw+b2g+PTuNqrpKElLjSc4IBa1V11c90ZcPq+r0vD7GSWL3lhdI48hT5xIrjnnCChoZF/HcY34cyvcqLu24MFyICgsFbKlzyVDlkl6QzSVlDiqdGqPZgMlkwGIxYTIZEIriiIqJ4FzEGXJ1WdTfqOHtH35+Sec/z/apQXRkNohz0sb46gjX+lsx1xrQVRbS5elkYm1070XhmXJypatx76H8eLqjFx9afx6sehlZcYW0vAuj3g8B0Y/X4ymXhud9jK0EcU86aLdd21vms+j37vHvanjBx/SdKbyTPmLi4wgTXEScLEWcJEOWKCc7P5t/+Md/ZGFxkb6BfgKBEdquXuPKlas0NDQxMDDIf/z7f3D92nUaE6HvAAAgAElEQVRaWq7S3NRCaWk5m5tb/M2PfkRJSRkNDc20XGmlrq6B9372HmOj4zTUN9La2sbtnm6MVjNt7TdoaG6ipqGOxpYrlFVVsLy2yl/9j7/GUmKlvKKSGzducv16Oz/96U+ZnJyioaGR+rombrZ3MDho42fvvUdPdw811VW0tbXR2NhAZVUlbW1XaWxooO3qVerqaqmvq+df/uVfmJ2do7qqhrraRqqqarhxvZ1///d/p79/gKbmK7S2tFFSUkYgGOSf//mfqayqpKSijBvt7dRcrkGj1fIXf/kX/OhHP6K67jIza1ME54cIzA0xNOvHP+0jMDe0Ny8wN0Rgfkc703vLz/gYXQwyPOtjfHmUq90tNLTU09s7wNTkNF23u2lpuUpjQzMlJaVsbm7ywx/8OZcv19He3kFzawtNrVf4Xz/+MR6fl/qmRmpqL1NZU4V/2M8//OM/UltfR11dA1ear1Jf10B9XRNXW69xtbWNpsYrXGlupaGhkffeew+X18PlxjoaW5opq6rA7fXw3r/9G/XNjVTX1VLX1EBZVQU/+tu/5d13/4zqqhqam1vp7u7Fai2luamFK80tNDY209zYQnXNZfptNn78059Q19hERU0t1252Ul1Xxzvvvsu7P/gBDc1XaGpppf1mJzdvdPBP//RPeDxeqitrqKtt4Pq1G5jNxVy7doOf/ew9VpeXSU1NQK4QEyeM5vXTx/nOq39MSl4q0+shV5zR1TGCT/mHfh4g+vjzZXf7v0oQffo4H58eXx1hZGk4ZBH19zKzMs304hSjcyOMzAWZWplgcnX8g/KVS0MML/kJrgSYvDdJcaOZypZS3BN2elwdDPp7aLxew+3+a1zvasY3/SSIji6PUHm1inRNJjmGfHL0+RRYNKjNGlQ6JQW6fJSmfMw1egaCvTimB7FN9zEw203fXBe22V5ckwP0Dd/ial8jV/sa8c85GQh2YRvtofKqlSs9dcxtTbwwiI4tjTC9Pok9OEhMfBS//63fJVIWzsBQH32+HsSpQn7n6/8XFyXn6RvuZn5r5gkXhueB6MjqzvlfGWHu3ix93n7ESVKSstLIVStR6XT8/T/848e/3H5L26N3HtLc0YS13owgKZZzEWcRCoRERUZy4eJ5zl84x/kL5zh77gznws5yMeICYeFhnAs7S0TkRWIEUUQKnoXEx+Hrw6yjuxWKdtM35alzkcSLn5vC6cPq0j8OjBGx4YRFniclM5nymjJkiVIS0xLIzM2gtKpkzxr6tAXz47RrKT0XfpZLeZmkZCbvRflHxkXs1Zx/kWPezTO6a02NiA3nTNhpwi6GceFiGGEXzxN24Tznz5/lwoXzXLwYRljYOWJioogVxHA2PBQ133yrgYfvPvhV3z6/VPtMQNQ96WBmY5KrvVfQVRZSYMnltrvjCxD9BCAaWPAxtjyKc9RFjCKOi8JwBAki4uRCxPFS0i6l03y1lZq6WqoqKxHFCZAKxfT39KIpUBEdHklLYzMXzp7HYjBxu6OTiLCL5GblYDaaCA+7wLWWq9RWXebsydPU19QiFYpJT07FOWgnNTmB6Khwis0GTp98g2Kzgf6+bi6GnSM9NRl9kYbTJ9+grbWFuurLnDl5mtqqGuKlMuKlcpyDdpR5BURcuEhjXT1hZ8+g06rp7erk4vmzpKckosrP5eypN2lpqudqcyNnT71JudVKglxOglTBYF8/l9LSibhwkZamZiIuXCQ74xK2vgEkAhFSsYBSq5nTp05QVVVGff1lTp0+gUarZCjg52//9m9pvdHC1No4wwt+huZ9+Oe8+GY9DM37PlbDCz6G5r24p514pp3M3Juk8VYt3QNdLM0tUF1eyZk3T2HQ6kLn9/wFstIz0ao0hJ05R/v161yuq+LMuVNU11QSGR1OZlYavf3dCMVxSOViysqtnHjzdcqsJdy+2cmFs+dR5uaTlZ7JxXNhdN64SU15FedPn6Oxto7YmEgyM1Lo6eokJSkeQWwUdZerOXPqBNZiEx03rxMVcQGdthCNUkVsZDS2vn70hUWcP30Wi8FETGQUmanpuGxOkhMTibgYxuWqSk6fPEGp1cztzptcvHAOjSofnVZDVMRFbl5vo7aqhvOnzlJ/uZbIixGkJCQx2NtPckIiURcjaLhcx83rN6iuqiQ5OR6pXEh0XASvnz7G1/7kK8QlxDK2PMbE+jjDS4Hnjn58HiC6G3S2+91nsZ/PCkSDi0N7/sghOAwNzQ8M9zO/PsfE/HjIKro0zvjiKGNLIx9sb8ciGlgeZvzOGKrSAnQVGtwTdrrdnQTn/YzO+/GPO+gcvIZ3yvEEiAYXh7k+cI2W7hY6HJ10eXrpdHbR5+6nz9lLj7ObXk8P3Z5buKYcOKfs2Kb7GZzpZWCuB/tcH+7pQWyjPbTbW2nrb8I7Y8cx3sdAsIuqthJaexuYvTf+iUB0fHmU4Vk/LbebqblaRYetnR5PF7ednfR4uqhqqaCtr5Xg4hCT62NMro99pEX0CxD9dO3ROw9pam+kpMFCXFIM5yPPERkRRUxMLOGR4cTGxiIUCImOiCQmMorwCxeJiooiOiaa8MhwwqOfjRJ/2jL4uBXyaViNjIsgLPI8EbHhSBMk5GvynmsR/SiL5eN+mWcvniEzN4Papst7kJiYlkDF5fK94fEXBdCn+ypLlHIpL5OwyPN7VtrdY3ieFfh5EfSPB3SFRZ7nXMRZwqMuEB0VRWxUNHExscTExBAVFUVUdBQxcbEIREIEIiGR0ZGcDjtJujKF5lsNvPsX7/yqb59fqn1GIGpnfHWEG4NtlDRaMFQXfWER/SVAdHx5FM+El8ScZCQpUlJy08hW5XIpL4uMnEwK9TryCgrIvnQJq0GPQaPBYxvEpNVSajJiNegxabXUV1bisdkoUhZQYbFQajRi0Gjov32btqYm9GoVxTodJUYDBo0Gr22QkkI1pWoVmrRUTLk51FsseLtuYynIp8agp95ixlKQz8CtTlrq69Hk5WHWarEaDBg0apz9/Rg0GsxaLRZdERZdIY2XK+jvuokmPwt1XhaFBTkUqfK42dbMlfpqNPnZWA1FWHRFFCmVeGw2rHo9ZWYTBrU61E+9Dmd/HyX6IqotRsqNOsxaFe1tzTTWVZGZmUJmdiqFOiUPHt1ndGaEyTtjDC168S948c178M658S94P16LXrzzbtwzTvyLXkbWArhnXGxub3C9pQVVdg7q3FzMRVoGu7swFhZiNeipKimhSKlkoOsWLbXVFOXnYNGqMWtV6JS5DLtslBqLqLAYqbAYMKoLaGtupOvGDfIvZaLKyaFIWYAmLw/XwAB1lRXoVCoqzGbKdVpKVAVMulyUF2oo02io0hVhyM7mVlMDvu4uzPm5VJqNlJpMGDRqbN3d1FdVoleryUlPR5OXh16tZsjppFiroc5ipFKroUSVT3ttNYPXr2LOz6HGWESt2YDuUjqurlvUV1ZQajJSrNdTajJRabXu3FdKLDodeRkZWHQ6ijQqCpS5ZOdkcCk7HXmylAtx58lUZzK6FCpnO7Q4TPA5/wefNYgGF4fwTDnxTDn3clP+OoDoru/q8LwP77QL77Rrb5g+ozCVfn8v8+tzLG8sMbU8SXA2wPjSGDN3ppi9F9LknTFG14IMLw3tgWhRhQbnuI3BQC+BBT/+GTfBeT9drpuh5/JacA9EAwt+Ohw36B/uwzvtwTPlZmhuiMBsgOHJIYanhxia9uGbduOecuKcsoesorP9DM714pgbwDU1iGtygN6hTm65rzM078Y7Y8c+1kflVSvNXbXMfAIQnVgZY2ptgpk7U6H0TVtzLG3PYw8O0O2+zcLmHItbcyw9mGdsJcjwvG8vcn5kafgLEP0c2rs/fJemm41oy9UIU+KIlcQgEooQCIXECQXECQWIxGJi4mKJiokhOjaWOIEAsVSCUCQkRhizl3rpccVJYl9IIpkQoVSwZxlNzkhCII17Rs9bVygT7H0XK44hVhRyE0i9lILOVLQHq/HJCnQmLSK5cG+9F+2fQBqHLFFKjCia9Ow0ZIlSYsUxiBUiYsUxiORCYkTRCD5k/eedG4E0LtQXcQzRwigEkliEotA5F4pECCVihFIJArEI0c5fsVSKWComShBBru4Sdder2Xx471d9+/xS7VOD6OhcENeEncn1Ma50NaIpVZJrzOKW6yaT62NfgOgnANHJ1XG8kz7yDAVkF+ZQfeUyzTda0FsMGIqN6M0mrGWlVFdUkJ2USIpMwsCtDlLlUrKSEzGqlaTKpVi0Gnpv3iBBJKAwJwttXg7xwjg6r7ZQYTaiEMRi0qgoyEwnSSqmv6OdvMQEVMnxlGuUJMdEYsjKZOBaK4nREegvZVBckENKXAwdV5opM+qRxkShK8gjJzWZZKmYvo528jPSyEpOxFyoRh4XjUGdR0dbI+LoC6hz0rHq1UhiLnK9uZYykxaFMAqjOh9VVibxwjj6O26iysokVS6lKD+XJImIvPRUOlqvkCwWoU5PxaouIEkYQ/PlcuprSomLC0etzcVUXITOXMi17quMr4/gW3LjW3TjXXDhmXfiW3S/kFyzdrwLLvxLHoaWvdwe6sBcqqfMoMei1RAvjEObl0PX9TYSRAIKMtPR5ecii42mtbaGCkMRssgLqDJSKEhN5FK8BMftdjIVEgrSkrCo80kUxlBpMdFUXYksNhptXg4mjQpZbDSdV1swF6pJkoqxFhWiSkshL16Go/06OXIpyuQEjDmXyBDFUW82cquxlqToSDSZGeiV+SgEsdxsacaoVpIsFVOiLyI3LYVEiYjemzdQZaSTnxiPVZlPSlw0jcVmOuoukxwTRVFmGsacLFLjYulsbKDMoCdFJsGkUZGTmkxWciJd19tIkUlIkUmoKSmmzGxEp9Vgthgor7By/WYbpdVWstWX0JXpGF0MDQkHV0aeiZj/vEDUOW7DNWFneN73awGiu30cXQ7gn/XgnnTgmrAzuhzYA1F7cBDvqIfK+goartUzNOVnfHGM285O2vpauNbfim20j+DKcMgiencMw2UdxfUmHGODdDhuYB8dCEFpsI8rXY24Jm3PgGjfUDf20QHckw7ckw78sx6cI3b8Ez58k17cY0780x7cUw6c03acMzbsswPY5wZwzgxiH+/HM+3AMT7AQLCHkeUhfLMu3FN2ylusNN6q/UQ+orvnaWw5yPgOXE6ujzEQ6N0bVdu1fg7NeffcFD4sav4LEP307f7DbYzlBjKUaaTmp6DUFaAuVKHWqlHrCsnXKCnQKMnXqsjXKtHotaiK1BRoVah0GlRFymekLCpAqf14FWgLUBYVoDFoyC/MR61Xk6vK+ZBl85+RSqdEWaSk4KnvVTolBdp8ctW5qHRK8jS5KIsKKCjMR6ktCK33Av3bVX5hPsqiAvI0ueRr8tAY1KiKlOQX5qHRqz/oy9PrPufchPpcQL4mb28ZZVEBqiIVBYUqCgqVFGhVFBSpUeo0aPRactX5KAtVqIrUpGWnoUiXozIpabne8lsaNT89jGfaued4v/tgeRyyRpcDuCcdNN2q33v47KXL2fHl+mUVXPIwtuZmcPQW3plBxlZ9BJfcz4BocHHoGfj78PKbHyw7vjqCc9z2XBB9FiaffyzPW+55IDqxOo5rzE18ViKJWUkojWpM5RbyNUry1PnUNzfRduMavd1dWLQaSvRaJoa8VBebKTXo6Gi9QlFeDm0NtQw5bGhzs6kvL6W5phJNThY+2wCdV1sozM2m82oLpQYd5UY9Qa+LshIjFqOGrlvXUBVk0lhXgdc9gFadQ3VlMVUVZgpyM7D13KbnxjW0udncbAlBaalBx5jPQ1N1JUV5Ody80oSuIJerDdX47D1o8y/RUltBW2MNmtwMXP23uXWtGU1uBu3NDVQVm7EWFTLh93K5tBiTWknn1RZ0BXnUlpUw4nFhVim5bNRzraYCXe4luq5foa/rBnl56Vy/0UTH7Wv8zd/8D5buLjC9MY5/MWTh9C949iydvnk33h35nprem7/gwb/gwTPrYnQ9yPTdCf7pn/+JpZlpuq+3ocnJoq2hFmdvN9q8bBoqyqgrK6EwNxt7z22utzaiKbhES2M1Jl0BFSUGhjyDFBs1FBsLudJQhTo3k5726wze7kSdfYn25kZaamvQFeTis/XTfqURgzKfjtYrGHVqSq16gsMuLEYNJoOaqy21KPMzuHGtCaetG1V+Jg3V5dRXlKMryCPoctB+pRFdQR6321qpMBuoLjYz5nNTZjFiMepoqq9Frcyj/VorjoE+lHnZNNbVcLmqHI0qH6/TFrpXcrK40dyASaOk3GQg6HZSaiiiwmTA3n2LjrYWyqwWVKo89EYtZRVWtCYNCRkKlCZlyCK6MoJ/Yei5IPpp9Dhk1t6oxjVh3wOup/+/P6kF87PW02C6+2wZWQr5iNoCA/Q6e4iRRKMv1eEedTE6P4K6WEmO4RLK4jxaepoIroRKCk9vTFJxtYzajsuMrAaxjw9iGx/EPj7I4NgA/SN9DC/4P8gisBIK4BleCLmghKq5hQIlh+f8oepzi0GCC6H+DS/4QiMKi56dH2ku/Asehue9IZ/2eR/+Oc/eD3fXhI3ylhIaO2uZ3Xx+ZaXn/pBYGSa4HNLISmh64u4YvYFubrpuMHFnjNGdkqq78Ll7Tp+XISG4HCrtGZoOgWivtw9hopiEzBSylfmodEX8wz9+AaIf1u4/2MJQrCf5UhLpuWkUWbQUmjRojCo0Rs2zMjxn3qeU+jPfnhq1Qf3kvKemf137/lHbL7IUkZqdiixJTn6hktrGut9OEA3ODO29AHaHTIKLQ0ysjT7xsnBPOmi+3bD3IPnMQHTZQ2DJzuBoJ67JPoJLboJLz1pEf/1B1M/E6jiOESfHzr/O9w+9xNEzxzly8hhvnjvFybOnQjn+9Dp0Wi0pcjnHD+xHIRQQfvYMYSffxFKkJezkm5x943USJWKO7d9HvEhIYV4uR157FWFkBOLoKI4f2E9RQT4KoYBj+/chFwk4c/4EZy+cJDs/gzfPHOPYiUOI5bHsO/wyYkUc+epsXj3wfSIvnEMSHc2Jw4fQ5ueRJJVw8OWXiBcJiQ47z7kTJ7AUFRIVdpazJ46SkSTn2IFXEMeEk38plZPHDhJz8SwyQRTHDryCJjeLVIWcY/v3kSKXEXbyTSLPncWsLSTq/DmO7d9HklTCqSOHkUaGYyzI5eirL3Hh9AnkkliOHt1HQpKEthstvP/+z3nnL95m/e0VJtbGQvfk6ihTd8aZWBtjYnWUidWxkHYsLXvTqzuWl7VRxldHmb4zwfzWDCv3lwCYmZzArC0k/PQpTh8/RrxIyIGXvk+8SEhRQT7HD+xHEBVOdFQYBw68hKogC5EwkmNH9xGvEHHsyD4uXjiFQa/m1JvHiDx/Zu8aJUmlpMUrOLZ/H5KYaERRUbx+8AA6VQGKeBEHjr6KLEHEqXOvcyHyDEVGFSdOH+NM2JtIFHEcOraPvJxM8jMz2P/9P0UWF4soKpLXDx4gPzOTuPCLHD+wnwSJmGOHD3Mu7AJavZ4jx4/zxpsnUSQkcujoURQJiSjVGvYdOERsbCzimGiO7nsNnUpJvEjIG4cOkRav4PTxY1w4dRKdsoAys4l4mZRTp97g1Jk3OP7GEY6fOsqf7v8uohQR44/5iD5vaP7TatfaWH/zMq4J+699ic/Hk7HvlqjMKExlcLifXmcPCenxVDSU4xlzM744hq5ci7qkgKIKNdcGrjJxd4zg0hAzG5NUXa+k/nYdkxsTjKyNMLIWJLij0fURRh4/FzsV6cZWdzXE2Ip/RyGL5NjyTt+Wg4wsB/ZS3w0v+xle9hNcHma3qtRuhpHg4jBDcz5cE04qWspo7Kxn6kNqzX8YiAZWh57Q2J0ReoJdtLuvM7oeJLASKpP8QttcDTKyshsMNsbU+iRdzm4kKXLiM5LJVRegMei/sIh+RLv/YBuj1UBKVjLpuWlozYVojGrUBhVqg/oL/RpJa9aSkp2CLElBgVZFw5XG31IQnR7GPeUIPVQWh5jeeQjtQt4uiHqmnLR0Nz1jFfhUILocAlHfXD/u6T7cU/0MzTuem77p1x9EfYwujeAe93Do9BG+/qff4OUjr/Da0f3sO3KA/UcOkJ2fR25+Hnm5uWQkp/BHX/4KF86c4+LZ83zjK18lPzuHC2fO8kdf/gqimFi+/53vcujVfWiVKl76k+9y4JVXEcfG8d1vfRupQEiCVM4f/O7vceHsWcIvnOWVl7+LUBDNqVOv8+Uv/y5xsRG8/PJ32ffaS2g0+Xz721/nu3/8LWRCMd/++jeICY8gJT6Rr37py4SfCyP8fBh/8q1vk3cpm+iLYXz9K18iNvIirx85yIljh5FLBOx76Xu89vL3UEgEfPNrf0hsZMTesZw/dZqw02f46pe+THpyCoKoaH7n//g/iY2I4s2jx9j38vdQ5WXxyp/+Cd/8oz9EIo7jyNEDRMdGcOPmNQAWVxe42ddO880mmtubaL7ZxJWOZpraG2m68TFqb6S+rZbWzis0Xq+nrfsqA55+fvGL/+Ja61UMhVpOvf4GX/uDLxMXGcWf/vF3OH7oMIUFSr737e+w/6WXkAtj+aMv/R6CyIsky6V89fd+h6iws5w4cpDvffOP0Obncvr1Y3zjq19BFBvH4X37OfXGCRRiKd/91rc5euAQcpGYb371j0iSK4iXS/jKV36fC2GnefPEMb7x9a+Qn5/F6dNv8M1vfBWxKJZXXv4eJ44dQZmTyze++jX2v/IqwugYjuw/iDAmFlFsLH/wO7/L+dNnOP3mab7zre+hyi/k+JETfO0Pv4EwVsL3vvMSRw4epyBPzbe+/h0OvnYIuVjMN7/6NSQCIWmJSXz1S18m7PQZzp48yZH9B4mXyKgsLUMuk3Dw0GscOryP1/a/zKsHX+arf/yHRMujmVydYHR5BP/CMIGFZ9M3fVrtjrhUXS3ntrsD20g/9tGBZ+QYG3whPW/dT6vn7cc20s9gsI/BYB/JBQk4Rmx027uQp8iwVJnxTXgZWxzFUKlDXaJEV1lIW39LKH3T0nAIRK9VUNdZy/jdcQJrQQJrQYbXggzt/A2uBJ4C0aEQgK76GVv1MbYW0ujKjrX6aa0M7yiwoyBjK6OMrYT8fkeWQkVI3JMuPFNuKlsraOioZ3x17IV+EIwsBwiuDBFY9T+hsbtBeoK3aXdfY/ROgMCq/4VBdGxtJNTnpWEm1ycYXRql09aJIiOR+Ixk8gtVFBoNX6Rv+oj2BYj+5qjQVEjypWSkibIdEG367QVR77SL2XtTdDhuYKkz0tbXgnfatTdsM7ocwDbST0NH7ROpVHZfJJ/qZbTsZWhhkKEFO/45O8MLTkZXfjNBdGxpFMeIk0Onj/CN73+T7x9+mVeP7GP/kQMcPn6E8OgoZAo5crmCM6fPcmD/QaIiozlz6iyvvrwPYZyIN14/weGDR4iLEXL44BGOHj6OIFbIgX0HOXniFLHRAva9up8L5y9y4fxFXnnpVSLDozj1xhu8cegw0rg4ju4/wMFXXkEcE8Pxg4c4ceQooqhoju4/wJnTZwg7F8aBfQcJO3eRyIgo9r92gIjwSC6GhbN/3wHiYgScOX2aA/tfIyoigv2vvcqF8+cRxMXwyksvcfLNE8RER/HaK68QER5BVEQ0+/cdJPxCJGdPn+O1V/YRGx3HqZNnePXl14iJiuWN109w4PABRGIh+w7u59Cxw8TExXD0+FEuhF/AYDLwNz/6EVXVVZwJO82xN49y4Oh+jrxxmJPn3uTkuTd58+yJF9K+w6/x+qnjnA47RWZuJj/4wQ8oK6tAIpJx+NBRDh08TFRENAf2HeD1428giBXy6suv8ebxEwgiIzj86mtcPHOGqPNhHNt/gLjwCE4fP86Jw0dQCIS8efQ4x44cJyoimkMHDiOIFXIxLJzXXtnH+bNhRIZH8dor+4i8GMmFM2c5/OprxF4M58wbJzj0yqvIhULOvHGC1w8dQhQdzeuHD/PG8deJixVwYN9BTp08Q8TFSA4fPIJIKOHUyTO89sp+oiNjePP4mxx8+QCCiDhOHH6D4weOIYoScvzAcU6/fgp5nIz9399H2OkwoiKj2f/aQS5eiCD8QgT7XztATFQsx4++zpFDRxHECkmQJxB+8QIHDrwagtEj+3lp/5/yh9/+AyKlESGL6No4gZWRz9UiWnujmsFgH74Z916w0uPa9Yn8OHmmnHgmH1t38qltPT39Avqw/fhm3HinXSTlx4fSFbn6uJSfSenlEvyTPoJzQcw1RnQVhZgu67k+2LZXFGBmY5LqaxXU3aplfGP8Awhd/0DPgugOgK56GVvz7MjNyGqo2MATWn7e+Q4Ndz8OocHFAN5pD+5JFxUt5TR2NDCx/vEVoj4vEA1ZREOfJ9bGGV8Z55b9NrK0eOIzksnTKL+wiH5Mu3//CxD9TVGhqZDEjEQkCdIQiLb8toLozDDOCRvzWzNcvl6FMDWWytYy7KMDOylDQi+K6wNXsTaY96yknyWIjq56CC65Qp9XfM8NVvr1B1E/Y0sjOEedCJJExMpjUaTHE5+WSFJ6ColpSQgkYqJjY4gVCIgTSJBK4xGL5cQJJEik8QgEEkQiGSKxjDiBBJksEbFEsTdfJotHIJAiFEoRSxTExoqRSuMRCiWIxRIkYglxMQKkEhlSsQxhnAixSIpMIkcQK0QoECGVxSMQSpFIFYglcmJjRQhFsr2+yOSJO9/LUcQnIBJLiI2LQySWECcQIhSJkUhlO3/liMVShEIJUlk8UqkCoVCGXJ6IQCBBIJAgkSqIE4gRS+WI4hXESaXEiEUIJJKdKEIJIomU6JhYJFIZmZcukZufS1bOJbJzs8jKvbT3OScve0/ZuVl72p3Oycsm41I6eQW5e/NS01OQKeQIhRIio2IRS+TIZAnECSQIhVKksgREO8cvEsuIEQgQSaUIpVKi4+KQKhSIpd4+1S8AACAASURBVDLiRCJEktD8OKEYiUyxd20EwtCxCoVSZLJ4hCIZEokCqUQROv9SOUKBEJFAhFymCF0HsQy5TI5IKEIilqGQJxITI0QklhEfn0ScQEJcnBihSEZUlAC5PBGhSBa61iIxgjgBkp1rLhKKkEllKOQKhAIhErEEmVSOQChBJJYjkSgQiWRIpAkIRVJEYgUisYzYODExMXEo5DIyMlNITk0gKSWe+BQ556PPkZSTRGA+BC9DC6Hh1c8LROvaa3BPOpi68/yI7RcdKh5ffToIJsj42khIu9MvGIizG1jz7D5CyexnNiaZWBslozAVW2CAmdUZ/OM+AtPDjM6PMLkcyiO6O4Q/sjzM2PrIc0HUvzKMb2UY7+oHCjwHREPPRs9OgKeTkRUnwVXfsyD6nOdWcHGYkaXgHoQGFob3YDQ0NF9OY2fjh9aa/+VB9MWH5kO+pjvLrowwuzFDj7sXUaKYhIyQj6haV/QFiH5E+8Ii+psjrVlLanYqkgQpeZoCWtpaf3tB1DVpZ/ruBHXtNSQXJNDYWbdX5WTXL+pKVyNFFZo9WNv97qNg8MXkY2Qp5HQfXPIT3P286H9Mz4fGXaB8np4G0Zv2609A6ocB5kdt6+M0vjqCd9JNal4queoctAYtRXodRpMJnV6HPEGOLEFOUloKiSlpJKamI5RKkMgViKQyYkVCZPGJSORyhBIpYpkcsVyKNF6BPDEeiUKCWC5BFp+AQCJAkZSIWK5AKBUiVoiRKGSIJPFIpEmIpTJk8QpkimTEkgRkCgUimYhogRCxTIE0Xo40XopIqkAsTUASH9q+LD4BkSweRWIKiqRkhFIZEnkCErkCiVyBLD4RsVyKRC5HnpiIRCFDlqBAGq9AIBEiUciRJyQgkIiQyGVIFTIEEiHypHjECRLiJEISExKRCgUkSCVkJKSSrkgiJSGexHg5mRlp5OXlodaoUatVaAo1KFVK8vPzQp+VBeTl55GWnkZubg4ajQaVSklhYSFqjZrcvFx0eh1KZQEqtYr8/HzSMlORKASkXUpFkZiAWCZFJJMiS0hEqpAjkStQJIaOVaxQIEtMIk4iQZqQgCQ+AZFcgiQ+HoFUSqxYjCQ+AbFcjiRehjReijxRjlgmRyJPRCgTIkuU7OxHjkyRjESuQCiJIz4pEZkigViBCEViEhK5BFm8FHl8MgKxArFMgTwhHpFMgEiqQJ6QEjrnCQokclnoWigSkChkSGRS4pOSEMulCCRC4hOTkMiliKUy5AkJxIkESOVSJAopcWIB8clJO8clRiSXI46XI09SkJAcT252OhXlxRhMRWi0ajSFSlSFBZTVlYVAdCnA+NIwY8uffTDQ7vPl8vUqXBN2gotD+Gc9z+QRffEftk9VblsZwj/nwj/n2vOxHFkeYvQTQPXj/9+Pp5fa/T5dk0z/UC8zd6aYWptgYmWMkaUAY8sjT1QRGl3+wM92ZmOS6rYKGjpqmbwzTnA5FE0fWB4msBLSyPNgbWUopOUhRlf8O3A6/Jyh+Q+ziD7uWjW0l7PVNWGn/EopV7qamL03/YQv7EdpNzfq6EqA0dWQC8DoapCeoS463O2hecvDe8FKH6eQu1Yo3+jEyhgzd6bp9/STmJ5ISkYqGm0hRTo9f//3f/9ZvD//W7bt+1sYi78A0d8E7YKoOF5CgVZFXVP9byuIBvYsojXXKolLjqaipRTH2OATD4gbg22Yaw0Mz/uesYp+Givi56GPAtHHLZ+f5T53U0V5JlxIksVIFGKSU5JJSUolM/0SGRkZFOm15KpySMlMJT4llZSMTHRmI8ZiKzqzGWOxGUtpGcbiYnQmM4ZiM0arEZ3FgM6sw1Csx2g1YiotRmfRYrSaMBSb0Vl06C1azKUWdKZSzNZKDBYzxmILZmslRksFRUYD+mIdeosFc0kpljILeosOvdmKwVyG3mJGX6zDUGxCby7GXFKOyVqC3mzBUFyCzmRCbzZhLikNpaKymDGXWDGVmNEXG9CZ9ZhKjJhLLOgtJvTFRZhLLZisJsxlForLreisOnTGIgx6PeXFZsrNBsqMVpQ5uaSnJZGSkUyeOp/mlisMDAzQ3d1NT08Pvb29DAwMcPv2bfr7++ns7KSsrIympqa95QYGBujr66O7u5uuri76+vro6+vDNmjncl0VqVnxJGXGk56dgVqvwVJmDR2b1Yi5xLp3XnalMxkxl5RgsBSjMxkwWCyYrFZ0JiOW0jIMFguGYj06SyGWcjM6kwmDpRS9pQhTiRZTiRmDxYLRUo6xuBhzmQljsRmdyYLJWorOZMZYYsJoNWIsLsVkrcBYXIKlrBh9cSEGixVjcSXmkhJMJSZMJbv3Rikmq5UiowFjsRVziRVLmXXnWplC95LJQnF5CeZSI4ZiI+YSIwazAXOxFYNZj9liocigJSUjkZS0RHIvpaArUpKQrCAlNYmU5ESKijTUtdYzvBgkuBxg9DnlPT8rEB1fHaH2RjXuSQeBBf+eX+bQnPcjnzHPQujwzkiK7wm5d3Jnjiz79uDtRUF0F4R3nyVDc17sowO4Jux7y6Spk+kb6n6iYtBHWhKfAtEXXe+z0uM/yHflnnRQ1myl+XYDs/cm9xLPf6zWHtPO9NzmNP1D3XQ6bzJ9d2IvsPBFtje+PsrYWigQbGptgsXNeUZnR6hvqqO1rYX29nZudd7mx//rx5/F+/O/ZXv01kOMVgOpWSlfgOivubRmLSlZKUgSpOQXKqlvbvhV3z6/VPtMQNQ95WBuc5rWnmbyTNk03arHPjqwFxk/sjTMYLBvz0f0k1gRfltANLDgZ3QlgGvMQbQ0mrMXzxATG4MgVkhkRBRisZjZ+Rk6um6SmplOYkoqSo2GpbU1th4+5M7mJnc3t1i9e5eN7S02HzxgY3uL7Ufb3N3e4M7WXTYfbHLvwSZ3Nu+y/WibtY11Nh9s8eDt+2xsr7G+eZfNB+9wZ+M+G1tbbN6/z8bWIza23uLe/W027t9h8/4D7m5us765zsb2PTY2H+x8/4B7D+5x7/4W97YfcufeFhtbW2w/fIvNBw+4t73NxtYWd7e22XrwkLub22xsb3Pv/hbr9+6y9XCLrYfbbD7YZPvRfTYfbrF2b537bz3gztZd7m5vsPFgkztbd7m3vcHDh/d5cH+Lhw8f0nK1heRLaWSoc6lpbeRH//fffuQ9+/777+Pz+fizP/uzF7rH3377EXmqbJLTE9FbdNzZusPmg20evPWIzfv3ubd9n+2Hj7i3/YA797bYeviQe9vbrN69y6N33+X+o7fY2N5m6+EDNra2uLf9gPuP3uLu5h22H21w78E9Nrbv7yyzyfajDdbvrbH54D5rdzfZfviAu9v32NjeCq23dZ+7W1tsv3Wf+289YPPBI+4/epeNrfts3L/H/be22bz/kM3td3bm3eXe/Xvc3brP5oO32H70iI3tLe5ubbL54AEP336bje1tHr79Tuh47j9g4/429x5tsfFgk837m2xt3ePR9hY/fPiIHzx8i8nREbQaFQX5OahyM0lJknHm3EkEwjhiIiLQFqqpu1qPfykYGipe9hH4HIbmnwbR4OIQ3mkXninnE3lEPw2I+mYdeKYHCS559/Si+YkfH/kZWwkSWPDv+Yfu9i1VlfQbCaK7VaJ2fV3Lmq17blldnk66vbeeUJen84XUN9TNla5G6m9epsd3+4XX6/J00uW7xW1vJ7fdHXS5b+EZdzE+N8ZPfvoTfv7z/+TnP/8577///qd97f23bf/1X//F+p01jMVfgOhvggpNhaTlpKFITSBPo+RKWws/+9nPftW30Sdun0FlpZBF9PEH7y6APj487Z50fKKE9r+NIDqyPMxgoJ+0vFTSslIpUBagVqrJz81HpytiY/Mut3pvo0iKJ7+ggNKyEhxONwO2QVweFy63lwHbAG6PB7cn9NnhsmN32rA7bThcDuxOOzZHH16fn76BPuzOAbx+D07PAHaHE6drCLvDg8Ppxu5wYbO7cTh9uNxenJ5B3B4fDpcbu3MQh8vJoM2Nze7B7nDjcNpC850eBm1O7E4Hbo8ntF+HE5vDzsDgAE6nF4fThd3pxOlyM2gbwOYYwOlyYXMMYnMM4vX5sDkGcHvc+If89DsG6Hc76XPa6envwuN1YbfZ8XhslJRaUKpVrN9ZZ8BuY3VtjX/913/lxz/+8RP6yU9+wk9+8hP+7u/+ju7ublZWVvbmPb3Mrv73//7fzM3PkpWTSU7eJSqqi3G6bPiGPNgcg9gdLtweD3aHA69vCJvDgc1hw+Fy0z8Y6r/L7cXudODyuHE4XdgcDrz+YVweBzZnH26vC5vdw8DgAB6fB5fXTr+tC6fLjd3hZNBmw+XxMGgfxOny4vUG6B8MXXO7w4ndYcfvDzJos2Nz9OPz+0Ln1+7B5x/G4RrE4bLh9Q1js7uxOew759+Oy+PB4/Xt3De+nfvDjjcQYNDvZsBlw+P1Yu/rY9huY3jQxaR/CEdvL1kZmZSUWGioqyQ7N42k1ASUBXnkZGSg02qoba3DuxzEvR7AvepneOXzB9HHc03uDtt/ouITy0PPgKh/zol3xr4DoKF5L2oRfdyVZ7c/I0sfFMsILg6Rokz8jQXR3WeXb8ZNWbOV2hvV+Gc9exkBfhn1DXUzGOyjf7iHgUAvA4HeJ7IMfJRsYwMMjPaF1hvuIzg3zNzqLP/2b//2Wbwv/9u3v/7rvyIvPxdlYQFpX4Dor70eH5rP0xSQqy6grqmR//zP//xV30qfqH0mPqK7L4DdB/7TiaR3QbSxs+6JB/EXIPrsfj2TTgZ9A6xurHD/wTaPHjxie+s+29vbPHh0n7abV0nPSqeu/jKXayuxWkspq7BiLTGj15moqi7FZDKi0+uwFJso0hViMuuwFBvQ6/VYLCYu15Vg0JspKS2msroYvV6LubiQispK1KoiKirKsVgs6PV6qqoqKSurpLi4hMrqYjSFWsrKSqmsKkat1mC1llJSUoZOZ8Ro1GEwqtHrjdRcrqWs3IpOp6W2rpyS0lI0hWpKy0xYzKWUlpZQc7kGk9FMSYmFyqoSior0FOk0FFuNaIt0lJWbsZZY0OmKqKmtRme1YCy1UFljJTs7k4yUNMqKNeSlp9JUdZl3HzzEPTCIx+Via3ub9fV1VldXuXv3Lmtra0xNTbG8vMzi4iItLS3Y7XY2NjZYW1vj7t27rK+vc+fOHe7cubP3+f79+/h8PkpLSsnNy6K8Uk9FpQWDUUtFlRVrcRmWYjNl5VYMRgMlJcVU15RRVKSjsrKcklITRToj9Q01O8ei43JtDRZLMWaLjtq6MkxmA9pCA6VlFkwmMyWlZuobSzGZTJRXWCmvqKDYYqW01IKluBiDwUx5eQl6gw5rcSnVNeUYjWZKSkLXSK8zYjabsFpL0enMVFaVUlVdiq7IQHl5FZWV5RiNRmoul2O1WsnOyaayqoSKikqKigqpqCzFbC3GUGLFXGZGrzdQU15CbamREq2e+qoy6mqryMjK5lbfbQLjfvKLcnEOufjLv/oLpsZGMemLqGqsxrscxHsngH99x2/x/wcQ3bU87oLTJwfRJzW+FtzxDw0QWPQyvOD9xH183vRu8v0UZSK9/q7fSBDdLVnqHLdR1myltaeZhe3ZD/L0/hKaXB9j+u7EXk353XkvtP6dUcbXQzmtx5dHWdpaZH177TfSSvSraG+/8zbxSQryVLmkZad+AaK/5io0FZKWlYosUUp2QTaX8rMp1Bfx3nvv/apvpU/UPhOLqH3sgwj53QfVLph+UHnDvmcR3YWuXeD7NAE+/51AdGRpGPe4A/eIm4fvPuCttx/x9lvv8M7b7/KDH/yAd3/wDm0320jLSKGntwP/sA2/34fL08eA7RZOp4ve/mu43DYczkH6+m/h9tjxeAexO3rwer04nQP09l/F5wswaO+mp/8q/iE3NkcHg7Z+nE4ng7ZuHA4bTqeDru52HE4bHrebrp6ruNwuBm092Oy38Hg89PX10t/fG7Ka2QcYtN/E7XbT19+D3dmDyzNA3+B13G4XXp+DvoEbeD1+fH4nPb23cblcDAx2M2Dr5NatW7Rdb8bl7cPn89Pdew2Hsw+v103fQDcOt4sBex/d/W3YHH24HE683hvUV1mpsZbx/773HjNj49y7c4df/OIXvP/++0/oP/7jP3j//ff56U9/SmdnJ3c+ZLnHBXDnzh3y81X/H3vv/dzYdebp/0Pf2tqaqlnX7lZ59juzO7PjIHWzGQDmBJBEBphzzgnMEUQONyGDJEgkkt0tqSVbVpYl2ZaDvFaatSVHeaRnf2CTlqXWTLclW9KYb9WncEHce3DOuYf3Pnjvec+L2+MinnIjiE4CwV12HHb8fgF/wI3bs0Mo5MfjcbC7t0IwGMDp2sYX2EIQRLZ37Lg9O/j9HnYca4RCfgKhPRxOO7ISIhAI4dhbJhyO4HJv4/IuEAz68Pq3cOydl+H27ODzu/H5vew5twgEvAT8IXYcy0hSCI/XwZ57GSEUxed34nLtEY2kcHm2cLrXkWUJj8eFP+BClELsOVfY2d1kbn6G7d1FQqEQXp8Dj3cLSRbx+L043JsE/X78nh0E/xqKEMAf3GLTuUZVkxb77ipCQqCiuYpQUual77/C0cE+HTYrw5NDKLkoSkFBzol/9qj5iwXtP+yF/Gxg98OvDx79/1EQvQDjCxCtNlTgkLYvs9Pdj+4HRB+kfvd7/L1AVEqHCO37GZjrZXZr6nIt6T9VF4FZ/1bdPrHOhTCR/N0lArMRjm8fcfJo4QpE79O8Pg81dZXoTM3UaGuo0dZcZiG60hdPlg4zdfWVlKmKaDFq0Rq0tHa38qtf/5WBaOTwfEH71Fmchd1ZWoctWAaMbPhXL+H0Iv/zxYL2F/NGP2/g/KKBqHwsIB+EUPZlHn/qDi9+90Ve+u7LPPPUs7z88st8/9XvsbRmp76xGo9vnYCwztHxARtbk7i9KxweptjcGUdS3OwfhLEvjxGLBYkn/CzYR4nFFJSwn9WNAdIHxzj2VtjYHiaX28fhnMXn2yOT3ce+PExIcHN4GGNtY4pEUiAY9LFg7yOVihAIbLOyPsbh4T67jnW2tpfJ5TM49jZxuGY4OIizubVAUNjiKKOwtNaLEg4SjnhZWRshFo0gyS5WVmdIpWI4Xeu4PHa8XhcjYx2EhC0ymWM2tidwudfJZPbZ2rITlkWi0RALK32E4wHiqTih2CyT8+fe1d/+9jcc7Cd5/M5j9xyrF2D5y1/+EkmSePLJJ+9rjD/66GOYTDZisTDJwx2Cwgb7h0FWN4aJRxNIsoeVtQky2SS+wDbLa0McHsbYddhxeRfJ57MsrQ4RCG2RPoqzsTWLrPiJxNwsLvcTi4UQQkE2tkc5OjpEEFxsOYY5Okqy65rC5Vnn8OCA5ZUJBMFFNnfA0vIE4UiQZCLB+tYIh+kIgrjH0mo/6cM8geA2W9tL5LIFPN519txLZDIpNjftBEO7HB7GWFkfIhhysrW9zNLqAKn9GLLiZHl1hOPjfQTBz8rqJPupCF7vOk7PBEeZOH55nXXXIpXaBjY8m8QOFBoM9STzB/z49Z+QOTqko9XK6NQI0UyUWE4hciwQfRDP5H0qnJE+llnp05UZvk99Onj+MIjWGCu/9CAaTPkuQfTwduov6qH9t0A08+gxp4+dXIHofdrM7CS19ZW0GJuuQPRLoI+DqOavFUTDBFJekqcxlpwLdIy1YurTs+5buQLRB/WI5hXE/RDpk0OeeeFpXnjxBb73yvd56cWXefHFF/neD15he2+LZl09m1tTbG2Pk04nWNsYYWNrjIODBEur3bjcK6TTUaZmulDCHiJRF9PT3ezvRwmGdpizWzhIHeDYW2B9q4+joxgra4Nsby9xcBBhabkPx94KsViImblOZNlFWAkxMW0hFg8RCm0xv9hFMhFlZ9vOon2Y9GGS7a0lNraGSadjLNqHcLrmSST9zMwbEUUXStjF7Fw7qUSMkLDN9HQf+/sxHA47S8sDyFKQ6dku1tZHSB+mWFsfYmt7jkRcYmlxhJDXRSop0T/ciCA7EcIhNnyd9I8ZGRzp4/f/+nsymUPuPPboPcfqe++9xwcffMC7776Loig8/fTT9zXGH7l9m47WTpLJCJ7AGP7gMvGEl8lpMwGfj1jcz9R0O4mkgCDuMLfYQTodZ2d3muXVPvK5DItLXezszrCfCjM334ckuUmkfEzPtqEoPhRFYN7eTjIRxe1eZ2HJytFRgs3tQdbWJjhKH7K8Mozbs0EyqTA3308gsMtBKsm8vRUl7Dnv0zkTh/vHeL2rrKyOcXhwwPbOHGvro6TTceYXRtnZXeTwMMLkjJlgcAe/b5fZeSuS5CMSdbG41Ev6IErI72Z6qpP0YYzdvVlWtjo5yiTYdk6wtDZKfV0NAZ+DwtE+em09yYMEP/7pj8lmj2lrszE+P0EkEyWakUkcicS+FCAauU/96TB6BaJXIPpFteUVOzV1VyD6ZZGlw0xtfSVl6g+BaNdfJYiep+9MnsaY3pigY6wVY6+OFbf9MmjgCkTvT8nTKKmTBG++/SZw7sF7//0PeP/993n//fcBODw6YGp2hCeeyJE+8vPKyy8SiW4Ri+3y3e8+jz84R6EQ59lnnsDtXuDb377NU0/dxuVa4OmnnuDWrUN8gQleeP4FEgkP0fg6r7z8ApHoLum0wksvPYckrVLIp3j+ue/gcI7z7W+fcefOGRub/XznyUd57LEMLvc0L7/0Iul0GEV28NJLL5BMhJCVDb773ecQxA0yWZnnnnscj2+MO3cKPPPMYwSCizz91JPcun2Ey2nnmae/RTLhx+ez8+zT3yEYXCIa2+WF559HlFaJxTx898VnCQU2uXWW57nnvs38goWbZ2me+vajZI9XkNwrTLXZeO3ll0h63Dxykr/nWP3973/PBx98wDvvvEM0GuXZZ5+9rzH+6O3bWA0mTgs5jrK75AsKz7/wBG7PBHcevc2TT97C51/mmWee4ObNA3yBBV555UWU8AaCaOfll17E7Z4kmTxvi9dj5+wszbPP3sHnX+Cpp+7wrW89gj8wx/PPPsvpaYqQMMXLLz2PpKwQje3y8ksvEgqtk88leeGFp/F6lzg9PeSZp7+NNzDJk0/e4uQ0gdM9zIsvfJfT0yTh8A6vvPwSB/sholEnr7z8Ah7PCoeHEs89923cnnFunh3w1Hcew+Ue5cknH+XO4zkCQTvPP/cdbp1kcDsXePGFZ9lP+5Bjy7zyyoscJvc4TvjobdRyFArw9M3bDLTo+P4rrwDw/e9/n46eTmY3FwmfxAlnZRLH0hWIXoHoFYh+wW3RPn/lEf0S6QJES9VF6Ixamg0a2v8aQTSaPveIph/Zv8yeZB00sStuXYHoAypeCLN/kuQX7/ziE/s7kYozPjmAP7BIb7+aZq0KW9t1jOZv0lhfQkf3dczmMpq01zGZi9A0PoxW+3Xa2tRoNaXoW4rp6v0mTQ11GPTFmKz/SEtzCXrj1zDoy2lquk5HVzG6lmKatMW0thfR0nINo6EKs+0hGuqv0aJ7mI7OMjT15Wg017BYS9E0lGA0VmGyfJ36umuYLSVYWovQaL5GR883aG4uRqP5Bgbz19A11WAylWBrraSm6hp6QzGtbTfQNKrR6R+mRfc1NA0VmCzfxGxWUV93ne7uesz6Wpoai7BZ/hld3dfpbqrFOVPKikHNRq0WxWgl3N7NY9n8PfvuAkTfffddYrEYTz311H2N8bPTE3RaDe2tenbdrXR2laHR/hMmyz/Toq3FZCylRf8Nmpquo9Nfx2T5OnW112ltLcXa+nW0jSr0xv+NxVpMQ/012tpVmM3lGAzXsdiuodepaNKWY7L8EwZdHVZLFe3d/0xDwzVMtn/CZiujRVuNwXidlpYbNDcVYzQV09R0A5OhgY6ub9LU9BDapq9jaf1nNLUNGE3XMZluoGmowmgsxmwpollbjMVSjtVahl6nwtL6DXS683K6+66j1ZTQ2Pi/sbZep0VbgklbiUl/nfra67R1qbF1/hMGTQlDtiLsrXXM1mjYM5rw2LqYaGjhJ6/+EIA333iDnuF+ZnaWkE7jyDmZeOYKRK9A9ApEv+g2OzdNg6aWFuPVHNEvg8wdZmobqyirKKZZ30izvpGOzlZ+/dcGohdzRBMnUeZ3ZmgbsWIZMF56ROUjgXBGuly+6eJx/Ycvap90g7kXIH5Un3TsxRJSF/qk4+9V3sXNLJYPkzqLE0h6L0H0oj1/DqVuxkkVEvz8Fz+/Z1+///77uDxOxicHCYddLC31c3p6jN3ez+7uDPn8EbOz7QSD2xwcKowMm0gmBKIRLyNDZg72IyiSk/m5NgqFLDtbsxhaHqanU8fKyjAb67Pk8ilmZzrx+7dIH8WYne1EVpwIgouBgWaOjuP4/ZtMT3dQKByz51hC03iNsdEutrYWWF4e4vTsmJWVETyeZQ4OJUZGWkgkQsQTQYaHDUTCIUKhbcbG2kgmFfy+DfS6Epq1lUxPd2G393N8lGJ+rhvHrp1c7oCpyS6Cfgf7+zID/RoiYTcJxY9voxvnRBf9D38DR0MdO81NPFEo3LP//vX3/3oJovFo9L5BNBKVMVlayObTBIUlQqEN9lMCMxNWQn4niuRkdMDIcSaOz7fO7Gw7x8cpNjcnmV/oJJNJMTlpY3d3llx+n9ERK5XlX2NleYz5+S7SR1FkxcfUpJXDwzjOvWUWFjs4PTtmY2OYzY1JstlDJibacXvWyBcOGR2xoir9R7a2llhc7CSZEpDkPSYmzRTyWfb2Fpif6yWTOWRjc5q1tVFOz46xLw6xtzvPwb7CzLSVqvJ/wr4wxOJ8G+nDCJGwm4kxE8fHcbzuTSYnWsnmD1jbHGd9c5BCbh/H4gCeuWH6SssYLytlSdPEaEMDP3r1BwC8+eYbdA33ML+zRLyQIH6skEyLxO/x/3r/GdTurYu1QidWR/EnPMTy4U9ZrAtzswAAIABJREFUpvIxfRnmiN7ze/Iy4YJEuCARyctE7q59Gs9HiGbDRLNhYrnzVQaUrEg4J6PkpMs0mUpWJJKXUbIS0rGAkv3DNfSin8MZCflI+EyDlT4diCqEc3cD1TJhjh85ugLRB7D5xVmqayto0mvuRs3XYum0XMHoF1TmDjNV9ZWUVZagNzfT2FyHxWr86wPR8IGCP+G+XLj5YhmND0NhLB8mkPQyvjLCh1PwXfyavpfkI+G+da9jPwqi91vWBbRevI/lw3iiTpZdi390k5PSoc8cRBOnUfZPk/zfn//LJ/Z3PBmjw6TDPT3JSk8Pib09hCU7m0ODnMgyjrERfHNzZANBNgf6CCwuEt/eYa2nm5RjjyO3h62BAQ7cbiLr60wbDcxaLbgmJ1jt7yUbCuGcGMc9M8OJLLPW14t3fp4Dt5vVvh7CW1tEtzZZ7esh5XQS2dhgwqBjqaeb4OICGwMDnMgynpkp9iYnSXt97I2P4V9cJO31sTnYj7CyQnJvD3tnOwmHg+jWJqMtzQxoGtkdG2Gxq5OU04lzYpzdsTHygsjO8BDOsRGOfR62h/sJrdrZd2/jmRhgq83MWNE32KmqwqHR8Hg+d8+++93vfscHH3zAr375K1LxBE9++/6ClW6eFuhtN5JPxXEuzLAzOUEmEGRnYADBbifl2GO1u4vI5hbxnR2WujqJOxyIK0vYOztJe33sjA7jnJzk2O/HNTlBV00lzskJNgf7UTY3OHS7sXd1IK2tkXLsstrbQ9rnR1pZZntkmLTXh2N8lM3hYfKixM7IMB1VlQQWFtgbHyO8ucW+08laby+JPQeJ3R2Wu7tIe70IS3bW+vvIBIN4pifYHu4n7XayM9xPb20FzvFh9kYHCa+vcOx1sznQTcKxQ3R3g+X+DpIeJ6HVBXYmhjkOePEMD+Lq6WFCpcZeXsVGdR1r9VqO91z8/je/5e2336ZnqIvZ7QVipwnCeQUpK1yC0Eeh7NP8z1w8XRlfGcGf8Hzij9hPo0/nYf18QDSSUwjnZZSCeKlwXkY+FonnIyQLCQ7P9kkVEuzfTJK6FSd58zwz0f7tJKlbCeKn0bvLIcXuZiyKXj7Ruuj7ix8DFyA6szn5hQHRSEY5j5q/AtH7tuUVO2XqYnTGpisQ/RLI0mmhRlPFDfV1NC312FqNuF2Oy6l8Xxb7TDyivrj7Y490Prw0U7wQIZD0MrY8zIZ/lRW3nVXPEuu+FVY9S/etZdfix/RJ+655l/9IK277PY//qFbcdta8y5dlbAbWWHIusOK2/9FN6c/hEU2cRtk/SfLzX/zfT+zvxH6c4VYbh6tbxOaXOd50IE/MEp61c+oOEJ5Z5HjTwf7yBsHhCZL2dQo7bgKD4+S2nAij0wij05y5/KQW14hOL3LmDCBNzKJML3DqPt9OLa0Tnl1EGJshs+Ukt+PCNzROanmD0Og08tQ8Nz0h9lc2iMzYyW45kcZniczauekJEJm1E19YJbm4RmhkiuOtPU6dPkJj06TXd5Am5u6Wvcfh2jbRuWVueUIERyZRpuY5cwdQZhaJzC2RXFpDGZsha1/nEYcbYXCUzPomselplMFhDscnCVvbeHR6kYOeIR47zt6z7y5y8L77zrsoosSz95lZ6dHTUwZNBrKyQnR5jcjCCrH5ZaTRaQ6WNzla30EcmWJ/ZRNhbBp5cp5Tl4/4wgrixBzx+RWku+foxOkjNDpNZmuP+MIq0sQsmW0nR5uO879v7xEcmbxbRoDYwjKJxVUO1rYIDk8QX1ght+tGGJshv+smtrCCMDZNdsdFftdNaOz83ApjM4gTs9z0BInM2YnOL5Fa3kAanya5uMRNpwdxZJzCtoPU4hLhyWmymzvktnYJT0yzv7yCND2NODXFzUAQcXaW6NIS6bV1wmMTHM0u4bd2kegb43R8HkXfyvHCKr/5xTu8/fbb9PZ2MLM5j3gzjv+mgvtUQCp8PM3nFYj+5UBUyZ9nb4tmZZyiA0/YhVtx4pR38cZc7Mk77Ipb7Mk77Mk7uMIOdsUtHNI2DnGbPXnnj87Zh4H0CkT/Y1hvXxdFxQ+jN7dcgeiXQOYOM5WNFZRWFGMwN9PV3coPX3318x5GD2yfiUc0kPSSOot/bF1Q+UhAPAwSyZ6n3VvzLhPJyoiHwX/XI/pRj+YneTU/C4/qvcq8qGM4c56Szx3ZI5yRLtPZ/Tke0d8PiB4c7WO2GnBsb7C9sUoo4KO/u4OdrQ0KJ3kmxoaQhAAbaysM9HQQDsuIUojB/h4iEZnRkQFGRwbJ5DLYF+dYXl5AkSX6utvZ2Vzn7OyU0cE+PC4HK0sLDPZ2oUgikbBMX2cbYVlkfGSQidEhjo/TeNx7TI+Psr25Tm9HK5vrK6TThywtzOJx7rGxuszIQA/xeJSwIjHU140oBBns66a73cbxUZrtjXXWlhcRhSBdbVZmJ8cpFPIsL87hde+xsbbC1MgQ7t1t9lNxRgd7EEQ/o+N9jI31MjHSy1i3jd/+6pekFZknH3vk3xyz7777LmFF4VtPPMGPf/xjfvSjH/GjH/2IH/7wh7z66qu8+uqr/PCHP+T1118H4Nbtm7S2WTg9PWF7ZRnX1ia7S8vM9fYRDQSRfD6GbDZissxATyfDA72kDw/YXF9hYnSI1aVFRvp7cO3tkojHmBwdIhT0MTk+wkh/D9nMEX6fh+nxUWQpRG9XO/PTE9y8ecb6ih2nYwdJCDHc38P25hrZzDEjA70okoB9fpaRgV4S8RiiEGR6YpSD/SRD/T3MTo1xUsizsrTA2vIiXo+L8eF+nNubHKUPGB/oIeT3sGafY6S3k4NUgogiMdrXTdDvoafTxvTEMAfpfdbX7ayu23G7HPT3tLGyMEuDupSjVILvv/gCw2Y9P/7BDwB4443X6e7pYH51jlguRjh/vo7olUf08wfR1M04O6EtKpvLKa4torS+GJW2FG1bAxUtKlTaElTaEip1apraG1E3lVKmKaao9mE0rfUIBwESJ+cLxl94Rz/8aP6LCKJXj+bv39xuJ3pjM0arnuorEP3Cy9JpoaqpmiL1NRqaaxkZHeC1117jd7/73ec9lB7IPr1H9EDBn/T8UWDSxQX8AijjhQjBlI913wrJ09jH5mLeS/d7k7jXPNGLG9RH54g+yI3nAqYv5rk6ld3L9vy55oneD4geHh3Qom9iemqSkaFBOjva6epoZ2FulmAwwPjYKGOjI9jMZrq7Otndc7C7t0tHZzt6ox6D0cD4xBiaJg0mi4nh0WEsVjOdHW1MT04gigJDAwMMDw5iMRkZGuhnc2Od7a1N+nq6aW+1YTLoGR0ewu/3Y1+YZ2ign1arhY62Vro7O6ivq2V2aorhwQGatI10d3bgdDrY3Fint7uLoYEBTAY93Z0d+P0+1lZXGBkaxGI20t3ZwfjoyGVbRkeGsZpNDA0MYDEZqK+vYWRiGGuHhXp9A33j/RhtBgaGevj5z3/O4vwMm5vr/+aYfffdd4mEIyiyzODgIENDQwwPDzM4OMjAwAAjIyMMDw9jt9v5/Xu/55HH72Dp6yASjzE9P8PwyDBGvZ7h/gF2tzbZ3dmmtc2GzWrBajIyMjyEx+NiaXGB3u4uzEYD3Z0ddHW201hfx+jwEIMD/TRrNQz09eJxu9naXGdooJ/enm7abFYG+noRhBCz01OMjY7Q2d5OX0839sUFZElkdHiI9tZWmjSNl33U0qRlcmKc9jYbVrOJyfExAgE/c7PT9Pf10t3VSU9nBytLdnxuFxMjw3S1ttLc2EBfRwdelwvHzjZDvb30d3djNZsYHhqktq6ajs52JqbGMVqMdPd2MTQ8QLmqlHwhz8ntE75Z+nXufOtxAH72+s/o6GlndnmWWCZKJHt3vuEnQNkViP7lQPTosQP2pB2Ka29QVH2N0vpiimuL0LY2UtZQQlHNNYpqrlHWUIzW1nD+vvphHir/BtX6iksQvbjeX/x4vwLR/xj2wQcfcPuRW7R3t1LVWHUFol9wWTotVGuruaZ6mBaTlonJEaKyxM7a2uc9lB7IPrNH89GccglpH55neQGLwZSPFbf9Y/s96PzN+/GS3mu/+9VHywpnzgOtnMru5U3p3wLbj2aGepDvTpxGz4OV3rl3sBJA6jDF0soy8XgCn89PMplidXWNQv48QCcUEsjl8gQDQVbW1njrrbd566232djZwel2s7C0RDyVYndvjx2nk1gqiT8YZGZ2lnT6CIBgIMRxJkMwGGJpeZnnnnuO1157jc3NLWRZwb64hMfr5f333+fWrdsoSph8Ls/iwiK7u3s49vaIxxPkcnmEYAj74hKvv/46P/7Rj9nddXBwcMjO9g5raxvwATz22B2CwRCRSJSF+UUUJQzAwcEh2WyOaCTKst3OzuYmm2tr+P1eBElkcdVOQAwRkkJMz8/ygx/8gMmpCYZHRnjnnXc+sQ/fffddwuEwgiBgsVhobW2lo6ODjo4OOjs7aW9vp6uri/Hxcd773e945M5j9I0O8+bbbxEIBsnnCwR9AbZXN/jey6/wk9deY3R0jGw2x9raOqIo8t5775HN5nDs7hGJRFheXsHpcrO0tIQgiNy+/Qhut4fllRV+/etf89yzz7G1vU06fcTm5hYhQQQgk8lycJAmnT7CvrTEk09+5/wchUJ4fX4WFxeRJJmQILK4aEeSZOKxONPTM3h9fgBu33oEWVZIJpNsbm2TzeX49a9/zdbWNko4wvraOqurq7zxxpu8+oNXcbndnJ2esbq2zub2Dqvr6zicLtKZDPvpNAurKxwcH6E1GsifnXJ4tE91fQXxeAyAN954g452G4vLcyQLCcIFBelERsl99hnU/hIg+mkDqu7V5ospS8qxSLWhgl1x64FA9OBWkqGFfma3pi6fRv17IBrOy+zfSrAn7aBqKEXVeFcNpbS0NaNuVFFaV0JZfQnqRhXNrU2U1BZTVl9Kcc0N6ozVCAeByxSq4Yx0+fQokPTSP9vDzObkJwZP/SUUycuE83cDTzNhjm6lr0D0Ae2Jbz1OW5eNyvoKqu9GzRtaDRhar1J8ftFk7bRS21DNDVURGrOWFrOGr331K4y3WT/vYfRA9pmB6IdT6304Sv0C7sTD4B8tgfRh0Ps04Pjn1gWIusKO+7pxfhRCHwSM4ycRDs9SvPurdz+xv/cPU6xtrvPIY3dwebz4/AG2dnbIn5wAEEskESSJXcceS2trvP7GG/zmt7/FHQwQEELseTwo8Th7bjeeUBAlHkdSFOwrq2TyeQCOszkEScIfCLLj2ON73/s+v/3d79h1ughHovgCQYJ3Qel7P/gB/mAISZbZ3nHg8njxeH3kCgVCokQimWJrZ5f/87PX+dWvfoXH78fpduP1B9hxOnnvvd/x7PPP4wsEcDidTEzPcHAXiB97/An8wRCiJOF2uxACAfweN/FoBCEUQhBFgqKAqMgsrizzs5/9jO3dXZZWlvnpT3/6iX34y1/+klAohCAKmM1mLBYLRqMRk8mEwWDAZrNhsViYmpriX3//e27dvs30/Dy/+c1v2U/uE5YUvE43js1dfviDV/n5L37B9vYu8WSSkCghyAoA33ryO6yub+DyeFlaWcXl8eLyeNlPHxGOxlDCETZ3dvnFO+/wxptvsed24/P7z/vzLow/eucOXn+AQDDE4vIyT96N9I/GE3h8PnyBAKIk4/MH2NjeJrl/QDQWZ3ltnUBIAODJp54iJEqIsszqxiaF0zMAwvEEUjiMIMls7u7yxptv8stf/YqAKCFHIuy63biDQda3tjjO5wnKEvFkiuXNLRIHB9SbDJzduUM+n6Wns418JgPAm6+/wUB3F/NzUyQzMZSMhHwiouQ++6cIfwkQ/XPU+QJE5SOBKn35A4FoLB/m8HaK4cUBFh1zHN5O3ZdHNJyXSZ7FcIjbl57QsoZi1I1laC0ayupKKa0tobS2BHWDiiarlpKaElR1ZdyoKqJGV0Uw6bsE6AsQvcg13zfT/fmDaO4cRMMZ6S6IHl6B6APanccfvQLRL4nM7WbqGmopKS9BY21CY6znf37lPzPb1fF5D6MHsj8riF4AZzgjXc4R/TCgfVrv5V8SRC88oh9u3yft/+E2ftJ813spmleI56K88dYbl4E1H7VoPMrwyCBHh2nmp2fIZTK0WazMzczy7rvvsrezg8/jJRGLo6lv4Cid5vvf+x6TY+Nkjo/Z3NjAbDTS39vL/Owc0xOT5HN5THoDI4ODvPXWWywtLGJfWCSsKLRom1Akmdd+8hNGh4Y53D9gZWkZq8nMc88+y2OPPsro0DAnhQL9Pb001NaxMDeHe8+Jx+Uioig0NTSSiMf5Pz/9KTOTk0TDEVaWljEbjHz3xRc5Oz1lZGCIw/192qw2RodHePONN3BsbTMzOUX68JAOmw1dYwPLi/Nsrq4giwK72zvYbDa6e3qYmZ3jtdd+ytzCImMT47z22mv37L+L5ZtcXg8utwuL1YLBYKC5uZmmpqZLtbS00NfXx3vvvUf+9ISeoX7efOstXE4njt1dIuEINVXVxGNxfvSTHzM6OUH6+IjpiUkMzS288Pzz7CeTTIyMkj48xGI00VBbx+zUNFvrG0iCgN/jxdiiI5vJ8NJ3v8vk2Dj5bI7ZqWnarDb+5e1/IZVIMDc1zfHREYYWHdsbm/zL228zPzOLLAgoskxnWzttVhv2hQVmJqc42N9ncnwMY4uOn/zkJyiSxGBfP4cHB1hNVibGJ3n77bexLy6xu+MgrEQwm6wc7B/w2k9eY3xsgqP0MfalZfR6IxajBcfWLssLS2QzWcwGM+1tHagqKskWCiQPU9TrtCT3U7z33ns8+e0nsbVamV2cJpVLEM5KyDmB8BWIfiYgGsnKHN5OMbo0xMzmJOlH9h8IRHeFbYpri7hW+RDXqx+mpPYGjaZGSmqKKa6+QXH1DcrqStGYG7lRVURJTTHXK65R3VJJMHUFov/R7c7jj12B6JdElg4LDY11lFaW0tyqo1Ffy9//l//MfH/v5z2MHsj+7B7RC+DcDKwxvjLyMfj8osPoBYjuyTsf++xe0wI+CqEPCqLBpJ+R6WGW1uzsOnZw7rnYczhxu924PS7Gpsaob6yluVlLZ0c7K8tLWC1mbFYLk5PjmE0GJsbHmJufRa9rpr3VRn9vDyajniX7AiPDg5gMespKi9FqGmhvtbEwP4fVYsJk1DM2NoLR0EJvbw+zszMYDDra21sZHh7AZNQzMzN1dx8dfX09tLe3YjTqWVtdpr2tlaYmDTXVVRiNegYH+5mZmcJo0NPd1UF/fw9Wi+nu3M8hDPoWhoYG6O7qQKdrZm5u5rwMbSP9/b3o9S10drQzNzeDrfV84d5qTRXmNhNT89P0jwyitxpRV1dSp2tmaWsLfVsreouJpZUVnF4PDpcLh3OPPbeLHYcDp8fNjsNBa+f5Y/iWlhaam5vRarU0NzfT2NiIRqNBr9fT0tKC0+lkamqS5mYt46Mj2AwGBru6sU9PY9Xp6Gxtpa+3G4NBx+zcNIOD/VjMRnp6uuhob8NqNbO4uEBbqxWtpoGqynIsZhPj42OMjg5jMhno6emmu7sTk1HP3Ow0vb3dGA06ZmamaWuz0dXZzsbGGhazCYO+hbGxEawWE9PTk8zNzmA06KmuqqCxsR6zycDCwhyDA300N2kZHh7EaNTT1mplyb5Ae0cHTS16BodHsLa2Mzw2zvjkNCaLFVtbO739A+iNZmYWFmjv7UVvtaJSV9CiaaGrtZOl+SVaza3U1zVyvagYndmMyWqhrKICvclCdV0DX/2Hf+C//v3f0TXRj3ISJ1iQ8BcExNyDzdW+AtF76O41NV6I0DPVSe901+V8zfv3iO5QWl9MSd0NVI0llDeqabE0U16nRl2rQl2rorKhAp21BVVNGeV1asqqS6nV11x5RP8K7Moj+uWRpd1MbV0NxeXFNFq0WDrN6OtrGG5r+7yH0QPZp4+aP1TwJe4NohcXh3BGYm57ms6xNsTD4B/B54OA2ucKotL2PaPr5Q9H6l+05SPR9/f7XbF8GHfYSZ2+FlVVGdU1VdRW11JXW09tbQ31DXVU1JRTXq2mXlOH3tRCUck1WozNtBiaKCq9hqXNRG1DDaXqElrbLFRXq6moKKOrsxWVqpjamkraWs0U33gYo6EFg66J4hsPoze2UNdYy7XihzCYddTUV1GqLqa1w0pFtZrq2graumyUlZdQVVuB2Wbk2o2Hqa6vosXYTInqBjpTCw1N9Tx0/ZtYWk1oWxopVRdjthmpqFZTqi7GaNFTVVeBqqKUju42bpReR9PcgNlm5Hrxw+iMzTS1aLhecr7dbNBSqi7G2mqiTlPFtZKv09Fjo6a+gspqNZ1d7ZSWlaJpbqbZaKK6oYHSigqqG+qorq9DVVlBVV0ttZoGGpq11DTWU9vYQFllOerycqqqqqiqqqKyspKqqirq6uqora2lqqqKmpoaGhoaqK6voU5bR72mFpvNhNmko6ZCTXdXG5VVatTVakydZq6prlNRW461zcxDRd9EZ2zGYNZRoi7G0mqiSXfero7uNhq09ZSobmBrt6CuLKO8SoWt3UJZeSl1DTWYrEbKykswWQ0YzDqKSq+hN7XQbNBSVHoda7uZmvoq1BVldPV2oK4so6q2Alu7hRL1DWrqq9GZWigqvU6zXovRoufajYewtNto0DVzrawUndVMo17HjXIVtp5OyqqrKKupQme18LCqlMoWDRqrkaKyUpqbmrEZLVSUqLAZzWg1WkrKyqjTaNBom2jS6mhsaOZv//a/8Z/+09/w3//uq/SO9HGQTxHLSChHQcKZzzrIT35AEP2kqTV/2QxvF3WO3w2E/AOI3h/AXcwHtQ6aMfbqL5fMO1f4E0BUuguicXaFLR6u+CbfUH2db6q/TlHFNRp1DRSpr3NddY0i1XWKK27QoKvnWtnD3FBf5+HShyhvVP+7IDq7NXUFol9yuwLRL48s7WYaNA2UVJSgsTazsLbIm2+8wXP3mazli2KfGkQTh3G8YTexQhg5IyIdC0jHAvKxgJAOomREInmFeccs7eM2pEwQORu6lJQJomSF+9KHj7vQJ+6X+WykZAX8+2525A3kzB/qKx4FkDJBhCM/4lGAcE5ESPsRjwPnOgogHPkRjvxIR6H7UjQTxh/x0dBSzw1VETX11dQ31NHc0kRjUwP12jpqG2uorKvAYNWjM7fwcPFDdPZ10Npt4+GShxidHsFg1VOkuk5PfyfaxjqaNA10tNkoV5ViNupZnJ+lrOQG7TYrE2OjqEpvYLYZaOu0cr34ISZnxjBZ9ZSpi5m3z1CvqaGyWs3I+BDlVSqMZh1Ts+MU34Wcjq5WikuvY7YZMJhaKCp5mKHRfto6rZSVlzAxNUq9poaKahV9A11U1qhpbK5nfGqE8nIVbdZWxkfHUJep0Tfr6GrvpKy4lMG+fnq7eyi9UcLc9AwGfQtqdQmjowNoNfU0NzWwMDdFY0MtWk0DOl0T9Q211NXXodVqaWpqunzVaDRoNJrLR+8NDQ1oNBqatVqaNFqaNJq70tKsbbr7Ny0tTc00Nmmo09ZS31zD6OQ41lYDVTVqpmemadBWU1FbSc9wL6qqUixmI9OTE6hVZUyOj9Lf24u6rJSpyQnMRgMlxTeYmZ6iqamB6ppy5uanqKmtoL6hmoHBHspUNzCZdUzPjFNaVkRnZyujw/3cKPomvT3tGA3N1FaXMzjQTWNDNVpNLfOzk9TWVWE06hifGEWlLqVF10RXVwfFJUX09nXT19+DSlXK8NgQnb3tlJaXMDo1it6so6K2gqn5GRqbNVTWVtMz0I+quoJGYzPWThs3Sovo6eliaKAPVckNBvq6sdksFJcWoTfqaGhooEnThK6phf//q1/lK//lK3zta9+gs7uDxKFE8kgkfCAiHUtIWQE5JyPlIghZATkfQMqKCMcKUk5EygmI2RBSTkLMikh5CaWgEDoWELMiYjZ091UkdBxCyAjIhSij62N4Ux7knISQCd0tI4SYubtPTkLM+JGyfpSciJw5l5gJImUCyNng+bUrE0DO+REzQYSjEHJWRMkJ559ngkiZEHJWQsyd10PORu+25bxuUjZ03obceR2lrIScPb8uKjnpbnky0nHovB5ZCbVOxYawSvSmjJQXkXJh5FwEKasg5gTkvIySj9ztN4FIIUI4L6Hvb6KlV0P0VCacF5BzAkoudLe+MlJORD4JIuUDiNkQck4mdhZmL7KFvq8RbUcd+h4dut4mbMMmDN0mdN0mmrtaMPTo6Bhpo7mzheYuHZr2ZlpH2ggc+IkUFOSsgHQcIpQOEkoH8O+76Z3rZnR1mP3bcaInESKFMOG8QjivECko53OE8+fHRgoSkZxMJC8RyUuE8+LldqTw6RTOS4SzEtGMwvGt9NU6og9oVyD65ZGlw0JdQzXFlcVoLE3MLM5/3sPnT7JPDaKpZIpgJEC0EEY8DiEcBRGPgig5CSEdIHDgQ86KbIkbjK4OIWUDiBn/n1XCsQ/h6LOReOzHnXCwJa2i5EPI2QDSXYkZP6EjL+GCgJjxE0x7/vD9l/IjHAXvS7HjKAHJT0NzPWWVpdRpa9HqNWh1GpoMWpoMWjS6RhqaG2horqe6oRp1tRpVVRnqahXlNWoqastR16gpKS+mpLSYSlU5lSo16pJSKlVqKspUVKrUVJdXoC4uQVVcQlV5OcUl11CVF1NeXkqZqpiyshuoy0uprFRRXl6GWn2uyio1JaXXqa4uv9xXpS6mTHWDMtUNVKpiqqvLqapSU1pWRHlFKeUVpZSUXr9bZgkqdTElpUWoy0soKy6hsriCmtJqqm5UUH5dfb5dXEltaTW1ZTVUXC+nrryOyopqVCoVarWKigo1FRVqqqpUlKquoy4vpq6+nKrqMuprqmioqaW+uvaPXi+2P/z+o6qvrqGuqvpStZVV1FbXUF2tprKqmMrKWiqrSygtvYaqrBJ1+cOUlhZTUV5EyOa1AAAgAElEQVROafE1yq4VUaeqRH3tBvXqSurUFVSXqCh7uIhaVQUN5VXUVVRRUVZCRVkJ1RUqysuKqVCVUKkuPZeqhAr1+WdVZSVoKiuoKrlBVWkxNWWlVBafb6uLrlGnLqOhsoIqlZpKlZryUhUVZR+SSk1NZSW1VdVUqtVUVqiorCqhTHWdMlUR5RUllJQWUVGhprKynJKSYiorqygrK6WiouzuubpORWUZ6vJSqqrVqMtLqa4pp6KyDIvFgE6npaW5iaoKFV/973/LV77yN/zj//oavUP9JAoy8TOJ4FGEQCZMKHcOmaFskkAuhFhwI2ZDBI4iCAWRUD6AkA8RyosIOQnxRCSUEwhmREJZkUDWT+A4hJiXCOVCBDMC8mmS4fVJPCkPyolMMC8QKoSQCkHEfJBQXkQpKIhZN3LeQ7ggIWVF5JyIlA0i5z0oBT9SVkTK+ZDyboSM7xxEcwJKIYCc9yPlAsi5EEpOIVTwn7clk0LIxQnkBIS8HzkvIBUEhBMRIS8j5c6/S8yIyLnz8qSMhJyTiJ0pCMchKk1VbIorRG6FEAohxHwUOZtAzCoE8gGCORExG0PISgRzPoRjidiZTOuEjrZJA+GTIHI+QPgkgHLiR877UXKRcwg8CZy3KSsSLoRRChJKIYCYcyJmXcg5hVDOSzDnRspGEXIxAvkgYiGIkpcQcxLBnEgwIxM6lhGOQyh314UVjgNIWQnhOIQzvkv/Qi9jGyMkbkVQ8jLhQgQlf/4DQ8mf7yfnpHPvbEFCPA4RLggo+XOAlnNBpGyAcF74k6Xkxbs/ds49z+lbh+QfyfHuLz85APTK/tiu5oh+eWTpsFBbX0WR+gZNNgPTC3OfGF/yRbZPDaKyLBPZj3B4K0U8Hz3PXZyPkijELrfTtw+Q0+fzROOF8McUyyv3pfs9NpqTieakz0SxvIKUDuCNOYnmZFJnMWIFhcTJRR0UkqcRojmZWP5CH61TmFgu8u9qP5dCics0tjRQVV+JwarH0m6m2dSEztKCuc1Ek0FLfVM91g4byxurzNrnsK8tsbhqZ35pgZHJUTQ6LQarEYvNgsVgwmo0YTNZaDWfy2IwYjWa7r63YjVbsFhMmM1G2trO53waDDpMJgMmkwGL2YRe34LBoMNsNmI06mlpaaK2phqbzYLdvsjS0iIrK0usrCyxsDDHxMQYRoMerbYRk8mA2WzEZrNiNOqxWExYrWYMBh1tNiutJjMWnYF2s5V2sxWb0UR3WzutJgutRjNdtjZMOiNmkxWj0YTFYsVkMt2tnx6zxYCt1Yit1YjZoqPVaqbdavuTdNFHH5bFZKGtzUpbuxm9zozJ3EJbmwWD3oLJ3ITNZsNoNNHRZsGia8Zq0NNuMWEzGmg3G2m7lIlWo4EOq5lWmwWTUX85N9dmNWO1mGi1WbBZzZhNBlqtZjqsFix6Pe0WC61GI+1mM+1mM1a9nlaj8VLtFis2kxmr0fSxdlgMxstzbrOasFj1mC06rDYjNpsZi8WEyWjAYrFgtdowm60YDEaMRgMGgw6drhmNpoG6uhrGx0dZXV1mbm6G9fVV7PZ57EtztLe3UV2h4h/+x1f4m7/5//gff/f39I/0E80EUbJ+lFyCcD6BnAshZiTEoyRSTkLOe1EyMkomSbggI2dDd/ObK3clEsmHSd5MES1EiBbCKFkFOSMTLYQJ5yPEzw6YWJ/Gl/QRP4sROY0QPlHOc6yfKMROo8QKEWInAokzgcTp+SPseD5K8jRM4kwgdiKQPI0SPxWI5P1EsiKxfIRoXiaaF4ifiCROFBKFKLF8jMiJcF7fzCFyNoVSUIic3s1cVAgTOVGIFmLEClFi+SjxQoxo/vx7Y/kYidMYB7eTSGmBSl0FDnmL1O0okROJSCFOLL9P9CRB+ERGzoeRMwmUfITISYhoPsbh7QTD9k6mN4dI3YwQzUvs3wqTvCkSzYskT1OkbiaIn0jETySSp3GSJ+fre6Zuyhw8InL4SITUzRTxM5nYTYlo4YBI4YDorQjxWwqJ0yjJm0kStxLEz/aJn6SIF+IkCnEi2TCRrEI8H0XJSIjpIIPz/cxtz3B855BITmH/Zor9syTxQpR4IUryLEG8EL17fZaJn0TYvxkneRoleRolcXJ+PU+chEmcRP4kxU8jRE/CxE7PU07nHstwduf0yiP6AHYFol8e/QFEi2myGplZmP/rBNGzszOCop9gLIBX9uCWXHgkNx7JjVf24JU9BCJ+HIFdlnbsBKJeAlEv/ruvgagXf8Rzf/rocZ9wrC/sxqu4PhP5wm6cgoMN9yq+sJvDkxRHZwcc30xzcJIie/uIzK00B4UkXsWFW9zDLTnxfEhuyXXeL6Ibj+i+53uP6CYoBwiIfrL5DE9863GeeuYpnnnuGb7z9Hd49rlnef6F5+gf7udv/+vf0tHdSfJgn2gihsO1R0AIMr+4wODIEMtrKwRCQfx+P6FAECEYQgwJSCERKSQQ9AcI+s4/CwWC+L0+vF4fPp8fp9OFy+Vmd3cXh2MXl8vFzs4229vbbG1tsrGxzuLiIvPz80xNTbG6ukI8HiccVlhdXcXpdDIxMcHU1BR2ux2v14vP5yUYDCCKIqFQ6I8V9COG/EhCgFDQRyjoQxICSGIARQwhCn6EoB9JFAgGRIIBkVBIxOcPEAxelBPEH/ARCHqRpD+0709RyB+47Jc/KIQghBClEEJIIRj0EQj4CfglgiEvoZCIIMhIUhBR8BEKuBEFH7LkJ+h3IQk+FCmAJPiQBB9iyEdQOF8+SgnLCKJASAghyRKBYICQEEJWFELCefvEYAghEEQWBMKSjCKKRJUwUiiELIqEJYmgP4AsSoQlmZA/gBQSkATxY+c/GAgQCPoIhQJ4vW7cLhc+nxeXy43D4cSx62JzY5ednT02NzdZXl7CbrczPz/P5OQkPp+XZDKJz+djc/N8PAyP9DMyMoxR30xtdQnf+Nr/5Jtf/wZTM+OkzyKkH4kRzadI5BOkTiIkC0lSuSP2TyIkT0VSJ/scnGTZL8TYP4kRSSvEMhFS+TiJXJzwoYwv4sEbduFR3DhFB76wm3A6TCAaJBANMLE0zm5ol0Dcjy/iPlfUhTfmxB914o94CMZcBOP/j703j5Lsqu88+WP+mPbpOadnunvGPePpNgZsDBg0IFQqbbVXVq6Rse8Rb19jz7VKVaWSat+33Cr3NTL2yMzaJLQgCQmQQEhoK2GM5QUjYfCYxRjE9Dmf+SOzUrVhC3Af7IPuOZ/z7r3vd+/9/W68fPHN9+57Mcbcwjj5+hzzC3nmlyYpLI0xvzjN/OIMc/UR5hZGmKtPMlefYrY2xVx9kvmFcfILk8zX55irz5FfGiO/OMVcvc7cQpn84iT585PMLc4wU5titjbO3MIchcUixaU8xfNzFJfmKS7lKSzNMb84u+zD4iy5+1Ocmx2geGGOufo4M7UZZutF8ksF5pemmFucY26hwtzSHPmlYfL1POWLRQ6d3c2Jc/spXZgjX5+ieH45lrn6JIWFAvOLs8wvTlJYnKKwOEu+Pk9hIU/x/CSzCwPM1kfJ1+aZq48wuzTCTK3MbK3A7MI4s0tjzC3Okl+cY35xhvzCPPMLRQqLefL1aeZqM+Rrs8xWp5kqTTBdnmLXwfs5dHo/5QslyhcKVC4VqF0uUblYpnS+SPVSkfKFArXLVeYX5iieX56L0oV5KpeKlC8WKJ7PU7owT/li4VeidGmewqVZipfzFC7mufDEeR576tH3hegvkd6/Nf9vh+uFaIojJ078dgrRf/jJT9i7fy9xJUZYWH6QJhwPEY6FiAhhAhE/oXiQqBghFA0QEUJExOAyQmil/C5RYQXxKuFVbrSJ3MImKoaJCEHC8SCReJCw8C6RG+qulq+zi68gBJaJBwgLQaJimExHij/71jf50Y9/xI9//GN++KMf8sMf/oCf/ONPeOnlF5G05XWQobifUCxAKOYnFAsSiq8QCy1ztRxdIba8jYhhktkE3/ve3/7C+T47eJa77rubgwcPcfnhR1haOs+hQ4cZGhrm0KHDHD9xkvHxCQqFEtVqjUq5QrlUXqVSrlCr1sjP5ZmanGJi5XVEIyNjnBsaY/jcGP19g/T3D9LX18+pU6cYHBxifHyc0dExJienGBgYYmhomGPHTtDfP8j58xepVmv09u7g6NFjHDx4mOnpGQYHzzE9PcP8fJFyuboiHEvMzxeZny9SLJbJ5/PMF/KUyoUVMTlLqVygUJynXC6u1lcqZYqFCuVSjUq5Rj5foFyuUiyWKBSW+yqVyhSLJYrFAsVi8XoKK9xYfwOlUonyCqUVKuUKlUqVUqlEsVClWCxQKBQpzC/n8/kCxWKF+UKeaq1IuZynXJlnYbFMoTjLfHGWaq1IoThLuZKnWJqjWFl+3+h8uUyhXKFQqSznV7ZzxSKFcplCsUypVGEuX6BYLFOp1CgUS5RKyz6Vy1VKpQqlUnnZ32KJSqVCpVymMF+gXCpTLBSYm51jbnZ25XMc5dy5EUZGxhgcHOLMmbMMDAwxMDDE4OAwQ0NjDJ8bZ2pqhvHxiZXP+xyHDh0mn5/n8uWHGR+fpLu7l3379nPq1AleeulFvvTFZ3n1lRe5dKFOLpMk12mT7ZXp3GPR+UAPmS6b3HaLrl2ddG/voaNbo2O7Tsf9XWS7usl06HTtyJLpTJPM6nT2Jujd2Y1uSTh9TThcTbh97bh8TXhDbSi6TCgWxuNrpaltM96oB1/Eg9PdiDfYjifsxhlsxuXdSiDsJhB24fI34Ak0EomFCEUCOH3b8IaaCMe8eAIO2r2bCMbaCUZcOD1NeIMuQjEP/nALbv82PH4XwUgAb3ArzkAj3lAMXyiA27cVb7gFb8SL2+/A62/CF/YSioXxh9px+5sIRf2Eoj6c3m34Q05C0QD+cDtObyO+oJtAzIM32ITb34Y7FMAX8eL2NuALuvCGo7hD7Th96/D4HISiftrcm2hx3kcg4sIfduHyb8ET3EYg7MHjd9PuaSQYdRKMunB6G/H43IQiQUKxNlyB9bj9zfhDXtz+zTgDW3AHw3iD/pVYmvDH/bgC7bi8TXiC7pV9rXgCzQTCHvxBN+2eZryBdrwBH76gG82UkDWJcNRPm2srbn8L/pCXNmcL96y/g70HdlOplXC42nB523D52pbnOOpfPg/HA4RiK+fdWGDlfLrM1fKt6q7mQ6Ifv+QhIPnwCz7iWoyHDux5X4j+Eul9Ifpvh0x3BkGO4Ay6V66I/pYK0Z/97Gfs3bsXzVCJizEEMY4oCcTFGKIkIMoCkiIiKSJxMUZMiBATojcQuYblumg8chORWPgm3qvde+UX9ScpItlchu9//3u3nIe/+Mu/WJ2Dm+O7mbgYuwlBjZPtzvD2d9/+hfN9uv804ViEo0ePc/nyw1SrNarVGrVqnSNHjjEwMMjc3PyKEK2uiqtSqUQ+n2d2dpbR0VFGR0fp7++nr6+P4eFRpibnGD43wdDgKJMTc8zNFVb6KVAqFRkbG6FQmKdWqzE3l2d2Ns/p02cYGBiiXl/g/PmLLC1doFAosXfvfmZn5xgaGl71ZVnIVajXFyiXrwqnMqVylXJl+aXq1doC5WqN+WKJam2Baq1OqVKlVK5SLFVWxOZy2/n5AqVSZbWvcrlGtVpfqStTLi8Ls6v5SqVCpVKhXKlcV1euvGu7ykp5tU25sip68/kC8/MFarUa5XKNSmV5zGKpvCxOS3lKlSLlaolCaX45XytRrpZYWKpRqZYolouUajVKtRrFapXq4iLzlQqFapVitUqhUqVUq1OoVJbjr1SpVGuUV7aVWp1Cqcx8sUS5slxfq9epVqtUq9XV2AqFAtPT04yNjTE6OsrQ0BD9/f2Mj08yPj7J0NAIw8OjTE5OMzeXp7Yyf7Ozc0xNzayK3ZmZWaanZ9i//yBTUzNcuHCRen2BpaULHD58hKPHjrLngQdobNhAwopiaCEUKUIo3E6b5z5cka0ExCBuTyNefyO+sJdwMIDPvRGfvwF/KIjb6cXr3Irf7yQaC+PxNOF2byUSDhAMuPD5m/D7HMRjEcIRB15PM8FgkGg0RtjXSijYSkQIEAx58LubCPrbCUQCeIOt+H1biEY9BEMePN4GfP5GopEI4VAIt3crPn8jsVgQr68Vl2cT0aiHUMiD19tMMOglFgsRDDXjDzbj83qJRkL4fRvw+LbhC8YIBjz4PRvx+5vxh/0E/O2EA80EAz4i0Rhebysuz1bCYT/BoAeneyteb+tyP8FWPN5G/AEvwbCPcLCZUMCBPxQgEPLid28h4HPiD8bw+h34fHcTDjkJBoIEQ634g1uIxvxEIn68ga14/A1EIyG8XjcudyOhsJtQyI3b04DP5yUaiRIMN+MNbMDjbSUaDRAKbMXnb1iJxU/Au5lAsJlQLITX207I10zQ78HvD+H1tuEPNhEO+wgGvLhcjXg8bcSiAh5vOx5PG/FYnGDQy5aGtTS3bsDjcdLc3Mgdaz5JLpfg4csPs62hkTZHE23tLbg9TsLR0DXn7hDh6D9PJBa66fwdEkIExQAhKUhYDCHqAnsPPsSPf/z+GtH3mp7/yvN09nYRkaLEVIFUZ/oaIfo+/5rIdKeJymHcYTdWzuboqWO/6cPnV0q/thD96U9/yuGjh0lnU+iGhmkbWAkTw9LRDPU6dENDN3V001hBRzd1VE29GV37V4OiqSRTSR7Y8wB/+wuuVr755pskUsnlNpqKql+Dpiyjr6Ap6KaGYenXYSYNMl1p3nr7rV84331Dfdyz7m527Ojl8ccfY2GhzsUL51lcrHPmzGnGxkYpFgvM5+dWxFKZQqHAXH6OsbExhoaGONt3luGRYUZGRxkeHmZmepb5fIXxsRkmxmeYmZmnUChSqVZZWKgxl59iLj9JsTTH1PQEfX1nOXbsKPffv4NDhw5w6dJFarUqS0uLLCzU2bv3QUqlAoODAxQK85RKBSrVMtVqmYXFOgsLder1GvV6jVqtviI6F6lWF6hUFqjVFqlWF6nVFimVqlQqC1QqNZaWFqnXl69CLi7WqVTeFZj1+iL1+iLVap16fYF6vU5lRZjVajUWFhZYWFigvlCnXl9mtW5FxFUqFWq1GrVajWqtSnmlXK9XVwVptVpmYWFxpd8q1eqyHwv1OrVandrKuOVqZXmshTqLS0ssLi2ulmv1OtWFGvlSgcpCjdpSnfr5RWrnFyhWS9TOL1CqVaifX6BUKbF0fpGl84vUFmrUFqqcv3Ce+mKNpfOLLCzVqdaqLC4urvhap1gsMj0zQ39//8rt80HGx8cZGRlhcnKKYrHM1NTy7fjJyUny+TzVaoV6vcrS0gLlcpF8fpZatcL09BSnT5/i8KGD9Pb2MDk5wcOPXGZxcYFHHnmYw4cOcfzECXp6u0nYKtm0gN+zCUUMIMbdiEobYbmNuBJFiruQZDcxKYylCOhCC6LoQFZVxHAcM+5GESPIkogkeJBEB6ooIMWDaIoXTQ6jyRKy6MLUgsiSjCzI2KIPTXIjqmEkKUxCDqLFgyi6iqIFsbV2dC2EJMYQJTei1I4kiAgxAUl2IgguVEUiHvcgiK3IUgghHkRR/ShSHF2VECUXhhlCiEuosoAsbENTvQiyhiZGsOV2ZNGLIAmoUpik7EOMhFEUnXjcgyg5UOQ4khgmFncQj3lQJAlF8SJKLqKxKGI8jiW6MWU/giQgSlFs2Y0eDyGKOqIcwNS3osp+FFHBMCPohhNNiaFIMXTTS1xoQ5UVxHgYUfQhxIOIYghRciIKMTRZR5JcGFY7ohBCleLoimM5FslAiUcxxTZk0YWkSojxAGktgC7FkCQFRQmhqE5kOUY8FkEUPYSCLhTRIBBwEwy6MHULWY7h9mwkEGgmFg3jdLSxbt3t7NzZxecuP4bXFVgWweEAcVHEsEx000Az9NXtP4duGhiWeR2atfxAp5HUMZI6qY4kx04u/9iHIAi/7tfdb0V6/ivP09nTTUSMvS9E/5WT6UkT12L4ol7MrMED+3fzk5/85Dd9CP3S6V9EiB49ephsZwbTNrCTFnbKwkwYmLaBYesYto5p65i2gWlbGCus5m84mRiWiZmwfzPcwh/TtkikUzzw4AP8v3//97ech7/6678i19mJmbBvEY9+s+hMGFhJEytxDWmTrh2dfO97t77qCjA4PEAkFuDBPfdTr5V5+PJ5ioUZioVZhgb7OHJ4P2OjQ4yPnePkyWOcOXuGoyeOc+zEccYnJxibGGd0fIzBc0OMT04wNTNNoVikXl+iXl9iYWGRcrlMPj/L1PQ4E1PD9A8c58TJ/ew/sJPDR/bx4EO72Lmzl337H+TAgb2cv1Dn0uUlypUC5UqBgwf30td3iqPHDjF0ro+zfScZGu5nanqcgcEzzM1NMT4xwtn+U0xNjTN8bojpqSlmp2cYPneOkXPnmJqY4NzgIJMTE0xPTjE00E//wClmZsY4N3yWyalRJiZHGRoa4OSp4wwODjAw0M/4+Dgzc7NMTC2/yP4qE1OTq4xPTjA+OXFTeXxyYnVuZuZmGR0fZ3p2huHRQQaH+pbHGDxJsVRkeHiIgaGTDA8PMzZ+jsnJEWZmJhkfG2FosI/xsWFGhweZHB9ldmaSc4N9nBvqZ25misGBPsYmRpibn+ZM30kmpkYZnxhhYmqU2fwUg0N9nBsZWK6bGGVsdIj83BR9Z08xMT7MfH6akeEBZqbHmZ4c49xQP2Njo/QN9HO2v4/jJ0/QPzjA6PgY45MTDI+OMDw6wtjEOPOFwso/AFUuXFhicanGXH6aqalRypU8+flJjh0/wNm+E+zfv4edu7azd+8DPPTQbnY/cD/5+WkWl5bXyS4sVjlwYC/7D+4nlU7xgx/8gKXFPI6WO1FEL5rsRdUcCKoTWRXQJRe64UbQIthKhJTchKY6kTUdJRYnLbnR5RiqLKNJHjSlDUMWUMUAtuHBVEOYioShOkmYATRZRZMVMrIbS3UhG2FUNUynHiIhR9BMDd0KkrPbMfQAsiyiaB4UzYEqS8iiiGq0I6sudE1Blr3IWguqGkaWI+iGD00TMXQZRXNiJQLIooquCphKA5bpQVR1TDlIVmtDV72IqoShRujU/ahCFFUzkGQPit6GpggoShhZcSBJXjRFQjc8KJoLUYyjSjIZxUVS9yEqArISJad7sMUgkmwg6wEyiS3oqhdVVrETUcyEC02Lo6kCdtKLJLejqSqKEkHRfEhSGEWOoGpOZEnAUA0U1YWVbEdRYmhqHFtrwTI8iKqJLkVIyS3oigtZl5HFAJ2GF0uJICsKuh5CN9tQlTiSGEXVfMRjXlTJIhzyEIt6SVhJRDGEL7CBuOBAEmK4Xe1s23YXO3dmWayfx+XwEgi4CIUDCLKMaVsomopume+Zq98h17Fyvk2kbOykRbYzw/GTx/nxj3/MBz7wa3/d/Vak1SuiV4XoNbfmU51JUh3LXBVDV8u3qrtWNP0qNv+a2v1Tff1TNv8j2l2ty3S/K0SNtM7Oh+7/N7kM5dcXov/4U44cP0y2J4OZNrAyJnbWWs6nTcyMgZkxsNIGVsbCStuY6QRmOoG1sjWTFsYKV/N6wvyNcK0PV7HSCZK5NDsf3MW3v/1tfv7OO/z85z/nZz/7Ge+88w7//f/771x54wrJjjR2OrHah5m0MFMWRsrASOuYKQMzZWCk9NW5Wp2jtEGyI8GOB7bzl3/1l/z85z/nnZ+/wzvv/Oya/DsMjgwiyVE0OUIhP80//PjHHDzwIIoU5Vvf+jMOH9zLyy+/yOuvvcK2bZs4cOgAFy5dYmD4HIMjw8wVC1TqNWYL84xPTzE1O8PsfJ5iceWBmXKR4eEBXnrpBf78z7+Jz9/C4SMP8sgjSxw7sY+/+7vvs7BYxeVu4cvPfZHx8WEuXFjg73/w9+zb9wCGKfP0Fz7PkaP7ePW1l/nWt75JIOji5KmjPPXUE5ztO8Hf/u13efTRh2lu2cKzzz5FfnaSainP22+9xc7tXcQjPt648hpjI4O88MLzfPftt9DVGLt3d/OVF77E8RMH+O533+LJJx9na8MGGrZtwuNtp7WtiZGRYb7//e/zne98h7feeovvvPWdZb5zDW+/xdtvv72y/xqbt97irbff5jtvvcW3v/1t3l7J37+zh0DQRXt7C5oR4c2/eJNvfPMKLm8jp0+f5JlnnuRs33G++7ff5fxSFZdjM194+gmGh05z+eICb7/9Fp1Zg927unjl5RfZ3p3mz7/1Z7z66st4fQ5mpie4eHGJkdFB/u7vvs/8/Cxtjm18/aUXGTnXz2Ofe5jvf+97ZJI6CUPh9ddeYeDsCf7m29/mlZdfonHrBgqFPI8/8QR7D+xnanaG0/19zOTnKNWqzBULTM7OMD49xWx+llq9TKk8z9TUKJcuL/H0Fx5DNwUWl6pcuFjnxKlDvP3dt6hU5mlzNPLCC8+z/8AeFhZr/PBHP2T/gT2s33gX/qATR3szO3fvIpVK8p3vfIdqZYKgdz2a4MZUfJimC0V3o2oCCdWFnXQjGCFs1U+n2YxhuZBNDU2M06l7MLQoiiJiaG4MswVdiaMpPpIpNwkrhKGKWGYbmVQAXVfRVJkO3UnSdKDYQVQ9SJcZIKGEEHUJ1fDQmW7D0D2oqohuetHNNjRNQlVEzIQTzXBjGAqa4UW32tC0CJoWxU75sC0ZQ5fQDAfJtB9V0TD0GElzK8m0F8nQsFQ/vYk2bMuHaEjYRoTtyQCaHEXRdVTNg5FoxdAFNC2IbjnQdA+aImLaLgzLiayKqJpKp+kmZ/uQDQFZi9Cb9JNUgsiaiWr76c5txjQ8aKpKKh0lmXWhazF0TSSd86HqjuX34BoRTMuHokTQ1BXBqooYuoFmOElmHWhaHF2PkjKbSSU9iLqJqYbpNJqxdCeyJaGpAXoTHiw9hKzJWHYIK9mKpkZRlCh2MoAk+9Bki2jUjSj6yKSyqGqIYHgdsupAFMJ43A4c7feRzhnS9D8AACAASURBVIg8+shjzE3PY1oCze1N+KMhZF1B1BVUU0NPmGi2gb6CtoJ+Q93V8/W1mAkLy7ZIpZIkk0k6uzo5efLk+0L0l0jLT813EZEixLTYqhBN5ZJkcun3+VdEtitDRA7jDruwMiaHjh+Ef3tLRP/lhGi6N4We0TBzBmbOwMjqq/l3MTGzFmbWvg49Y6FnzOvQUsatSf+C/I0275VbtLnJl7SB3ZnC7kwSFEJ4Iz6CQpiQGCEohPFF/fjjQezOJEb25lj0jIGe0a7DyOo3YaYNElkbxZDRTBXd1rBSJoatY6UsEmmbDVvX89GPfRCXYwuRoBPLEPG6mrhrzScxtBh+TwvxqIeuDotcR4K+oQFmCwVGJsaZnJ0hXypRWVygWK1wbmyUPfv30X9uiN0P7KKhYTPr1t9NS2sDkhxBkkNsbriT9RtvR5Q9RAUHkhJCUsJs3LwWX8CBpISJxryIUhivr4VP/MmHyHWajE/0YScVFDWKw7mVdRvuRFYjxEQ/shJB02Os23AHrS0bsfUQStyFInhQBTdrb/9DYqE2dMlHPNxOPOzE69rMbZ/+MILkQ5R9RGI+YnEfDY3r+A//67/jQx/5v/nwR/4b69bfjWmbaKaJYS9f5TZsa/WKt26ZqIaOpKmoho5umujW1av0NlYygWHbGLaNoutIqsLauz/Df/vg/8GHPvJf8fgbkJU4khzF4drA3XevQTNjGGYUSQphqj7W3f3HeF0bsXUfQrQVSw8QC23jvrs+jhhzoAguFDmEZYq0O7bQsPU+TD2OIgXRlBiaGuGutbcRCblJmiKaGMLWBMLeVtZ+5uMYShRdDGIqMaSolw133042m6RSrzE8PsbEzDQjE+MUKmVqS4vUlhaZKxU5eOwox08f48zZ40SiPrZsXYfT1YzX38a96z/DtqZ16GYUQfKiGzFEOcCaO/8Et6cZUQ4Si/vRDAF/sI0Pfuh3+d9/99/zoQ//HidPn8QwLVpaNpNKBHG33YkmOLFUD7blQtM9qEqcpOHAzrqImQEM2UVvogkz6UQwZTQxQrflRtfDCHIUXW/HspvQ5Ciq7CaTdZJMBDAUActuIZv1oukqiirSYbSSspuRk35kw0eP7SepBonpArLporujBU13oqgChu1GT7Sg6SKqGsfOONEsF7ouoVtejGQLihrCMKIkMh7shISqxVHNNpJZH6qqoethUolNpHIe4qaCqXnYlWklkfQRN0VsM8TOjB9djSLrKprhxko3o5txVD2AmWpDs1zIShwz2Y6ZdCBrIpqp0Z1w05HyIZkxRC3I/Vk/KcWHaGgoSS/buzdhGO3IikQqGyHV4UDVwmhajEy3B9VqQ9dUDCuMlfQiK0FULYyVcaEZcTRNRTVbSXa0oBtxND1Myt5GKu0hbhpoSoBuqxHDaEOwBHTdR2+yHVP3I+oCdjqIlWlG0ULISohUNoCs+pBFk0jUiaR4yeU60IwwgchdxOWtBENOWloaCEUbWDw/xZXXr/DiC18n26GzpWUzzpCHmCagJDWiahw1qaMktHdJateXV1CTOmrqekzbwjZtUokUyUSKzo5OTp54X4j+MmlZiHauPKwUI9WVJNFhk86lfuPC631uFqJRJYI36sHOWRw6cei382Glq0I01ZNETy8LLDNrYGRuEKJZAzO7IkRz15C10NM6esbAWEHPGFg5G6vDXt6ucNX+Wq7df7WNmTUxMitkzeXyDXVGxnzXnxWMa+2y76KnDTI9GaJanLUb72LN+jXcteku7tp0N3dtupu1G9aysWkTRsZY7idjYKTfRU/r6GntZlIrpDWMlI6dsVAMmca2bWxra1jeti5vm9ub2NbawH2b7uWza/6EULCR1ua7WXP7H+F2beHutZ9ize2fwOtswVDinD15hEo5T3WhzPT8NBMzE1QWKyxdXmJ4Ypjenb2kO9NkujLMzE1TKs3zwO6d+LxOWlsa+Owdn+BTn/oQW7au5fbPfoTGpjvx+rdw+2c/SlPzvbjcm/nUp34fl+c+Wh33cseaP6TVcQ933f0pwpF2hkeOs2797dx11ycJRbZw59o/ZvPWTxMIb2TN2k/Q2LyW1rb1rLnjo8RDW/A517L203+AJjTRsPGPueezf0g0sI4Nd/8R99zxYYRoI7d/5iNs3vRpItEmbrvt92nYdicxoZVP3vZB1qz5f7jzzju457613Lv+HtZt2cDGhs1s2raFjQ2bWbd5A+s2r2fd5g2s37yBdZs3cN+m9dy3aaVuy0Y2bN3Ius0b2LRtC/dsuI+NDZvZuHUTa9bexu23f4KP/fGHcPvu5vc/+B/56Md+l2DsHv7zf/4d1m/6OJF4I2vu+BjtTXfhddzFvXd8FDG8lZaGT7Ju7UextRY23vMRtqz7GJbazr13f5zNmz6BIrXz6ds+TGvzXYRDDaz57B/hdW+g3XEnd3zmI8RD23A2r2Hd2j9EirSwZcOn2XDvbTiaN/Cpj38Id9s2Du/bw9T0GJXFCqVakaGxIebLeWpLVeYr8xw5cYRcTw7VVNl74AEWz5c5N3yGVEanpW0zt6/5BBs238mf3PYH3H3fbThcm/jM7X9Ec8t6Ghvv5fbPfphAqIGW1ru4c+0fEghtY+Om2/nUp/6A2277KH39fWQyST72x/8X0chmQoGNaKITQ3OTsD3omh9NEUiZ7dg5D1ErgCa1sD3ZiJFwEjdj6IqPbrsNVfMiaVF0vRXD2oKuhNFUJ7kOB6mkH1UKYVrb6OzyoRkSshqly24mmWhATLqQTTc70n7SeoCoFkW23WzvbkVR27BMFSvpwUy2oWkishTDSjkwbBemqaCbHqxUE6ruQ9MDpHJO7EQcw4ihWc1kOrzomo6mBsmlN5PpchExYpi6ix2pJuyki5gZJWEF2JFyo6lBJF1GNdpJ5lpQlBCa4cdMNmHYLhQlipFoIZFpR1SiKLpMl+Ukm3Qh2kHiuptdnT5Smoe4HkdJudixfTO60YauyaRzEbLd7ShKEFWJke3yoFut6JqMYQZIZLyoahjDiGMm29CNGIauImktpHIOdF1Cln0kzQYyOR8RXcA0vPTYjSQS7cSsCLrhZme2HdNwIZtxrJSfRK4JWQmiaRFSWS+K5kVXLGJxF7LiIZvJIopBHO7PoOjNdHXZWJaIpDZTWxjlymtvsFC9xPb7O7BzFpKtENPjaCkdb8yHYIpoKQ09baCnDdSkhpbWl8+jqWW0lL5yvjUxrznPmykLy7ZJpVOk0ik6uzo5derE+0L0l0jPPf9lct0ZwqtCNIGVM0nmEqQ7UjeRyiWvI5272Sadu9nulmSTJLOJm7iV7a18uRW36u+9ksreYtxbxXeLefgfwY1j5rqzxNQo3ogHu8PiyMnDv6VC9Kc/5cSp43T2dpDMJUhkbZK55fULyVzielZ+ltLKXEPaxEwZ2Blr1c7O2iSyNoncynaFZEfipj5vslvJ2xnrOqy0eRP2ig9matkHI6mv+HK9j1f7MNMmmq2uxnh1q9kqiiljpoyVvg2s1DJm6t1b8KtcE/tqOW2SyNqYKQNJF7HS5nVx2hlrtX/djGJZXhTZQSjQSMDbhMuxjVwqwenjJ5kZn6E4W2ahukCxNMP07Ciz+XGOHT9AIqXR7mpiW+NGtmy9j1DEw/07uxgZGqAyP8ejly+wUC0wNHCKPbu6yaV1PM4GPM6thAKt+D1tRMNt6LqXaKQZSVmPJDUiCo2EI+txORrIpnRGzh0jGnIRCTkw7E3Eok0YZiOacR9C1IWqtqLIbsSol4ThRFc2IUecpKw2DG0LWtyPbW5Fjm9DE9tJGh6UqJuk4SGb9qOIbRi6k2SqHVVzYtsGlplZXiNm66u/RHWVdz+ba+fduuk4MVI6mr38S1aKKaPZKsm0RtJSuWft7bS7Psl/+k//E3/wod8hrnyG3/l3H2DT5g9hJ9tQ4h5sOYQhtqCEAnQkwmjCRrRogFyyBTm6AVNykDLbUCQHknovptWKEHOi681YdhuS6ELTWohLa5GEVlJWG6ayEVnYgK614PdtwOvdgmnG2bV7B+PjY+TnC1RrJSrVPJPTw0zPjjI5dY7eHTlULcamzfdy972fxeluJpHSOHBoD/PFKc5fqHD5kUVmZkc5fHQv2ZxFOOrB42ujqXkTbmcjkWAbotCKKDWiqA3EhU2IYhOS6EBXQ0QCHvrPnOHBXT1Ew42YhhNFdqBrLnTNiW35MLUItqZiKw6yPTEihh9Lb2FHuhUj4SVmBVGkRranW5GUNmQ9hGm1kso0oashVMVBtqONVMqHoYYxra10dfmQ1TCKFmJHthXb2oiccRFXW9mR9pGxgsT0GEY2QG9HC4bmQhUFUskAVsKBrkiookgq7UZR2tBkCdP0kkhvRdedmLqXXIeTZCKKJgfQjQa6e0IYioaphsmlttC53U3cjmBqLnZlHdhJBzHLj2l62Jn2oakBZF0kkfBi2ltRpQC66sOymzB0J7YhYVotZLMuJDmCIMXpMFx05zyISQ+y3U5v2kFa9yDbImKilR29W7CMFlQpSjYbIZFsQZOjaHKc7dsjKGojihjB0NwkU15sXUZXYqRSLgwtjKWpyLKD7u4opqphaCHSZjPpbIB4IoquO+iyG7EsJ3I6jqY56E02Y5kOZDNMJhMik2tBU0IoUoB02ockONElCzHuQhZdZBJZhEgEl+suHnrIolqeZHZ6AE1vpKdb5M+ufIvnnn6F6ckpipUCx84cW/178wTdRMQwoXiQJkcTDS1b2dK0mYaWrWxt3nIdDS1b2dbacB0NbQ00OBppcbXQ4mrB6W+nZ0c3P/rRj94Xou8xPff8l8l0poirMSRTIN2TwsrpJDts0p2p67jV93yqM3mzXect9MCt6Lh+jeTq2shb2N44xi/iVv29V26lOW4Z3y/w8b2Q6kiS7krdxHuJOdudIaZGCcT96CmNBw/s+U0fPr9S+rX/Mv/xH/+Ro8eO0LWjc/XDuPohXisirxOH6Xex0iZGUl8Volftbmz7y3CjuPjFQvSafSkDM6lfV3/t/qsiUTGkVT/NlLGcz1hIurgqUm81/nvh6hrSZDZB944ueu7vJteTpfv+LrLdWVIdKVRLQTejqIobv3cr0XAbnVmDo4f2kp+eZGpsnKmRCYozJQpz8wwNnKG7I40QDeBxtbL+vrU0b9tELOKnrbUBp6OJ9tZttDRuIhrykE0ZHNi7i7npMS4uVjlfLzM1PsSBh3axvStHyOehrXkjkuBGiDmRlY2oShuxaBPxeAPOtkY60jb9Zw4hRgN4XU0kkk2Yhp9YbAPJdANC1IumtiOLbuJhH5bhJpVwoElB0kk3utaEEPZhW01YugdN8pJLhTHEIJbuwjZcyGI7tuUllfEQF1vRNAVDT5JI2tgr/1hci5HSMZM6ZkrHWOFGGzNlYCYNNFvFTBur/5xoukDKNLhrzWcJBNfye//n/8KHP/zvkbU1/Mf/7X+moeFj5DoCKHEfpuQmobdiiSGSugtT3YQpBckmG7C0LdhqK5lkG0K0DVndQCLhQpGCmEY7luVEjHvRdQe6uQlRcGJqDgxlG2JsC0JsG0K8ld5ei4HBE8zOTTIxMcbU9BT5uWmmJoY5dmQ/6YSO39tOa/NW2tsaad62CZ/HQTjoYcvGe2natgmv24Eqx9i5vYuBsycpzk/z8MVFyoVZzp4+xo7eDixNIhxoJxxqJhLegqI0IQgN6LoTRfYgxnz4XA76Tp5iR3eGYGAruuZCU93omgdNbSdhB9CVEKYskdQ8WKkQET2EbTrpTrRhJUMIVhTLcJE1GjEsL5IawjRdJFMtK1dE3WRzLkzDjanFsBPNdHWFkNUYuhmjK9FCR9ZBWGtBNjx0J/xocSeCIaLYXjozLWiKC12RyGXjmEYbuiyhyxLJpHvZX0XGMn3YyW3oqhtN8ZLLecilZHQljGW30dsTRRVkNDlCJrGNRNZB1AhjqB667FbslJuo4UNVnOxMhxEFL6ohk7ACmOY2LE1AV4OkM24UuR1LkzFNB5mMF92QEWWBDsNLR8pLWHOgJr30pj0kVR+CHkdKONnR24yptSFEQ3TmBLI5L4oQxpBlursj6LoDQxEwNB+pVABVjKJKUTIZL5oSRJMEdM1FV0cMRRCx9DCZhIN0OkTcjqIqbXQn2tC0dmJmBE1zsTPnRZFbiCsB0skQ6UwrthnDUCIkE14UyYMS1wj6m5eFtppAjEQJh7ew836Fwtwwo+eOo+tN+DzrqRVqVPIXObB3P9t39pDpShOTo4TiQfwRH3ElhsPdyvot61i/ZR0btqxjw9b1q+V369ezYeu7rN+6ng3bNrCxaRNbWrawuWUzjY5Gcl2Z94XoL5FeeOF5ct1p4mqUkOzH7tAxMgpaWkFNqagpZRUlKd/Etfv/Odtbtk3fzC8zzk3cor/3zC38/lVj+6divnHpnp7R3lPMRlYnKAZwh1xoKZWz587+pg+fXyn9i7xH9PiJY3T05m4SkbcSfzdippa/+I0VEXi17lYC81btf5HdLUXGDVxtf1VsXlt/rVjVbJVkLsH23dt57vnn+NNv/imvvv4qr73+Kt/402/wzT/7Jo8+/rlVgXqrGN8ruZ4s50aHKFWL5ItzzBVmqS5UefSJR3n51Zfp3dnNvevX4PM1cfLEAUZH+xgaPMVg/2nys1NUSgXKxQJTE5P0nz3DK19/kaH+M9zf08nrr77C7NQ4xw/t5/VXX+HsiWOMnRvkxRe+ws77O6iU8zz77NP09mR49HOXee2VlxnoO8NCrcqlCxeoVapMjU9w5vRRxsb6ee65Zzlzdg+FwiivvPI19uzppF6rcPnSBQb6T/L5Jx7jyScf48ixLr76lS+ydH6WvoGdvPbaqzz5+UuoSoihgQFKxVHGRo/y4gsvMDZ6hPPnZ3npay8wMrKfLzz9CF/+0hcYOHuQLz3zFF946mH6z+7l5ZdfoFab4Wz/g5h2hI2b1tHU2MaZs2d58y/f5I1vXOGNb7zBlW9c4co3riyX37jClTde58obr/PGN67w+huvX8+V13jt9dd49fVXefX1V/jTb36D16+8RkdnhqZt21h37z1ksiEef/wyn/tcnVNnO3j88csUCucYGTvGiy98laXaLMW5Pl59+SXGzh2iXj3H11/8Cv1nuvjCU+f54jOPcGh/iqeefJQnn16ir+9BvvbVr1KrTTMxcYo3rlyhVh9ncvo4X//61xgaOEKlNM6Xv/Qkw0PHGBw4zLmhE4yNDVAozlEuFxkaHODrL77AQqXEru3dPPelL3Jo74OMjwzxxuuvcfr4EWYnx3n5pRfZt/t+HnvkYb7w1Oe5vyvHhcUFKoV59u7awQvPfYknHrlEvTjH+WqJaqnI2OgAhcIE+/d1Ml8Y4atfeZbjxx9kaPAUmzfex7p77uXo4SMcPvQQzzzzOP39h3A6N+Lzb8Mw/OiGj2jUgxCNYCk+TDuGX/Cjyg5ylouY6CaihFFkF0mllWjMQSQeQNXcSMo2YlE/kUgbiZQHUXQixEKoehvJVIBIPEQ0FiCtt2EZLfiFFgLRNjJ6ADXmIyzFUIwACaMZIe5AlUVk2Y2mtyOLArIgoGgOIpEWouEgqupFNZoQRQ+RcDvJlA9VCRMN+9B0J3YiQDwiIsSW+0xmvPgFP7LoIWu2E5daCKsB4jEXnVaEWNRHOB5BVXxoRitCLEQk4iaZ8hMX2hHiMSS5Dd1wEwoHCEXCdJgRDMVFUGwnJLaRMdxocQ8xOU5UaSeTakSItSALIorixTBdiEIURZSxEwFkuR0hFkWSfCiqGyG6fNveMF3IUoBIyI+suEgkQ8RjMWIxN5bmwDCCBOUg8Vgraa0NSXIRViPE4+10Jb0IQhtRKYhpBZHVhuUHk4QAluUlGGwhFhGJRtzEYm5y6U5kQcDn34SstBHwt/KJj3+QQGg9f/LJ/8rv/ZffY81n1hGNRAhGfARjAULxIMFYgJgcJSKG8YW92BmLzu0dpDqSZLsz5Hqy15HtztxEpidDsjtFtjdLujtN984uzvSf4h/+4R/eF6LvMX3txa/SP3yW3ft3kuq2OHr2ACcGDnN8+CjHh49cx7Fzhzk6dOg6jp07/J7sbsWRwUMcHjh4E0eHbm5//RhHb+nf8eEjt+zvvXJk8GYff534fl1uHPfM+EnMnIFiywyM9fPKlZd/04fPr5R+7b/Mn//85+w/sI9ULolmq6iWsnpr82r+KoopI+niTYiagGxI19ndimv7+udsZUO6DtVSbvLnqr+qpVzX5kbfrl7p7N3Vww9++INbzsP3/+77mCkDQY1fx9XYbhW3pIvX7ZMNCVETCMYCiJqAYsqopoKe0Ojc3kHPju7l9+PZKrt295LPTzE5OUJ//ymGhs5y/PhhOjvTDA8PMDU1Tm9PJ19+9gsMnj3N7h09fPXLX6T/1AnOHD/Cqy+9yOmjRxg8fZILizV27urksccv8sgjF+juzlKtFZmfnyWbTXHx4kX6+gZ4YPceJiemmZgYZ35+mkcfu0ShOML5C2Wee/4ZDh7aw8TEOFOTU5w6eYzLly9z8dJ5jhzbwecevcT03BB9Q3t5+eWvU6nOsX17jmq1wuDgCYaHj/LM00/T33eYC+cLPPa5z3H6zENculTj8088xpnTh/jKc8/y+GMXOXXiQb72wrNMzw4yMXWGzi6bNkcTrW3tzM0Xft1D+qa0+4GdWGYC20rQ3Wvwyqsv8vknL3Hi9Ha+8pUvMTc/wvjkWa689iojQ/1Mjvbz/JeeZ+DMMRZrM3ztK1/l1IldPHKpysWlKgf39fDss09x4WKBE6ce4plnnmZiaohzw6d5/fXXmJ0bYmziOI8++jn6zpxkbHSAi+drzEyNMDx8lr7+E5w9e4Kp6TGOHj1MJpPki888xfBAP/se2MnTTzzG/j27mRod5usvfJUjB/YyOtTPE48+wu4dPTz+yGWe/vzjPHB/L49evsjouQGyCZNHL1+i79QJjux/iMLsDIcPHWZsdJharcDs3AgLS3M8/sQFJiaGKBbm8HjcbFi3kf37DjA3N8Fzzz/N/gO9BMOtdPVYxEU3mh6kuydFKmEjx73olojdkSQWbSehekmldYy0SSTSTkcijGXFMWwNVQuiGh4StokoBklnY6QzKpZlIkjt2IkoPdt7sWydhOYhmQiw/cFOQjE3KS1MNqFjZzNERB+5VIjODgNJEjCtMKYdoKuzk2gkgpkILteZBooaQjXcpDMaccGPnQySShukUwki0TYsO0ZHrpdsJkHS8qAaPrI7uhGFAB2JEOmMQKo7jSiGSahhurrSWMkkqhpGMzzs3LmduBBC031oeoRkIkVcdGJaYZKpFLKqYggB0gkBK6sRElxk7BC5pIadySBbUXJZL+m0hCiImLaAYQfp6uwmEo6TTItkcgqZdAZZjqDqQXbs6EIUI6iGF0WJkEoliMTaMcwgqWQSw4xj6V4sWyTdm0MQPXTYYVQ1hN2RIib4yCXCdHUaRIQQph1BN51ksyaKGkXVfQiin1ymE5e7GUH0o+sWkUgIr38L0XgrohTg9z/4X4jEm3B5tnDHHWu4/dN3I4oisioQEcMEYwHCQghBjeOP+Gj3Osh2Z+jc3kGmK32TCL0qRDNd6evpyZDuzZDbniPTk1kVoj/96c/eF6LvMb308tco1OY4PXSCfcf2cPGJRR5+6gJLT9ZZfKp2HQtPVqnfwMINNotP1Vh4qnaTXf3J6nXtV/Ofv0qF2go32tafrLL4dJ2Flb4Xn6qx+HSNxafqN4xfp/75yk3UblF3HU9W393e4N/VeBafrr/rw8r+W83He+FqHNdyK7vr5vXpGo98+RIPHn2QZGeC+XqeN//6zd/04fMrpQ/cdtttfOADH7iJN998859s+M477/C9732Pt956ix07dyAocSJimLAQIiKGiYhholLkuvytuLoe6EabmBy9iat9XcutbH+RXVSKEIoHCUT9+CM+AlE/wViAQNS/Wne1/lqutolJEZ76wlO8/d23+e7ffpe/+c7f8Fd//Vf89bf/mi888zRRKYI/4sMX9uINefAE3bj8zlviDrhwB1zXlV1+J+1eB83tTbj8TrwhD96QB6evHZffidPXjpk22b1nJzt37uDw4YPs3fsgPT2d7H5gJ+lMgnDEx8lTR8jkEiSTBqdPHSOZMNm1s5fTp06QTtnseWAnJ44doSOX4uCBvezf9yC5XJLDR/azd98eMtkE+/Y/SDaXIpE0OHhwP6aloygSx4+fQNMMkkmbAwcf5Njx/fQPnODkycPsuL+H3p4eenp66e3t4fCRw/T0dLF7T5YzZ0/Q0WVy8MgOjh87Sq4jwbFjhzh8+Ag77u/i+PGH2LdvHw/s6eVs/xH2PrSXffu3c/TYfvY8sJsTxw8wPHSWnTs6OHXywP/P3plGSVEe+nvuh/85frj33JzcRFFEQXbQqHHDGI1JNCow+7AzSy+19zr7DDPDzsCwb7IzwGy99+xb98wwgBJj3JOYmIUBFBCz3Nxzb/RGzfP/UD0tiF5RGUZMPef8TlVX1/v221VvVf3qXdm1ayNLlxeyYdNKTNYFpM9KZWZyIjt37+btt9/m7fO6zp49y9lzus69fe6i9UGdPffR8uPfnX7rNCtXrWThgmzMZoEVq0rZsnUDZeX5rNtYxtM7trBkWRHrN66ken81ZcXlVFVWUrVqI8sqlrK+qpKK0qVUrV7Gvt07qFyxknVVq9i/fx9lFS4q11SwceN6SkrzWbe+knXr15Kbr7JmXRk7duygvKyCRaWlVFZWsm7tWtatryI3z0lm1nzWVK3C7lCQFSubN29AEi2UlhSycf1aXHaN5csWs359FU6HxqoVy1i6pJziojxWrVxGcVE+RYV5bNu6mbw8Fy6nxuZN67HbFBx2hRUrljF3zjzy8vJYu3YNRcW5rFhVzo6dG9mydT0rVi6joKCA9PRZiKKMybSQwmIbW7avZvGSaNDREwAAIABJREFUImbNTiQzO4PVVeXIipkZ06ezuLyIyqoVzMlcwPz5aWzZsIKyilIS01NQNQub1y/D7pBJTE5k5apyVqwqJTs7m4WZ89iybQ1FxXkkJSVTWKSxactqzFaBtLRU1q8pZ/WaMlLnppBlXsiWDZUUF+SSlJ5OXnEuGzcsxSpkMmt2OlXrlrBiVRHp6RlYLFY2bF6Gw2UhNTWZ0rJ8KqvKMJkWsGDhLDZsXs6ismIyMtKR1Ry2Pb0BTXWRlpbMyhUFVFYtYV52NvPnz2bLhiWULHKRPDsdp8vFzi0bEEUL6bMzWL6inMo1i5i/YD4LFsxj89bVFBS5yEifRV6+ysZNKzGZLaSlzWbDmlUsW1rG7MzZmMSFbN+8ipKCPFJmzSW/xM2mTeVYrVnMmjWH1WuWsXxlKbNnzUeW7GzaUkVhkZ2MjNksXlzOps2rycpeQMasVNZtWEJZWRGzMjIQpSy27ajC5XKRlj6T5csLqVq7kvmmbObNT2fL+uVULC4meXY6dpfCzm1r0DSBtNmprKwsY/XaEhZmziEraz5btlXidEnMnJmM06VQVl7AjBkz+dGPHqW0zMGSZfmkpk1n3vxUNm5Ziigv5Dt33smPf/Qkc+bOJm1WCknpiSRnJJE6O4WUWclMT36KJ2b+BJOYE3+R/6TChU8s1JBNmBQzFtWCSTYhaFaWr1rGO++cJyEhgffee++KPDjfffddRowYcclzc8SIEVck/uHkpVdfpD5Uw4Yda1m8tpymnhCBLi/+bg+BiPci+T9Bgaj3kv0C0Uv380W8+KIfydvtIdgbwB/x4I94CPR4aewNEOzx4Oupwxutw9fdgL/bQzDqw9/tIdTrJ9jrwxfVv/dHGmjsCxCMeglG9TSHenyEe/2Een0EIl5CPT6CvQECvX4CvV4CfR4CfQ36eq8ff48Xb7SOQG8doR4voe4Aoe4AwYifYMRHoNtHuC+It6sBX3cDwV5/LM0NBCIe/FFdgR7fRf9vUJ90vII9/osUiPo++dh+TK1HmyhbswitSMHTVM9vf//GcGefL0TCxo0bL7mYHn300c8MmJSUxKJFi1iydAlFxYWXvJkONuD9eOPaT2us+3FdbtvPT2vY/PGwg+kRNSF+g/u4BktAP15iObjNqlhw5jsoLi+iaFFh/G3dle/Ue7wrlotKQnOEbLIsmZeUkuYI2WRbs+LGeXB9MMyFnwe3LciZH0/T+AnjsVoFJEnCarWycOECJEnAZleQZAuKKqCoVkTFgqhJCKqIVbYi2/SZR8ySBVGTEVQRs2hGsakoioYoyKiqDUWREQQrkmRFkEyIkglRykaQslFVGbPZSnZ2NlbBhFWwIIhmFFXEbDYjCBYkSSE7OwdBEJAVCVnJRlFFJNmEIC3EarUiiCZUVUIQJSRFxCxkIYgikiJgEXOQZBXNIWERzJitZmTFiipbkEV9XEdJzkZWTciKBZM1ixxrFgtyFmB3uyguK6aorJDCRQUUlORTXF5M4SK9zW3hogKKygopLi+iuExXUVlhfFm0qJDC0gIKSgv05aICNIeNnGwL2VkmJNmMoshIsgVZzUGSBWTFjKaJKIqGJGgIVgFFciBaRUTBjGS1IQhmZFFElVVkWdL3VXIQpCxkWdbHxBStKIqMrJqxWBdgszmwWGWsVhlBVBAlBUEQkCQRkzkLWRVQVAFJNqPaZayKgEWyINlkrLKARdLPuVURsCoioiZhlQWssqDnCUXQx2RUJSyyFUEVschWTKIZq2TFYtElyxImUxZmSxayYkUQLVitFsaPH48kKVitAjmmTGQlB3euSl6eE5MpE4s1E0nOxipkk52do+cn2UqmKQezJRtFNiMpEmZJQNUkcl1abJpcM3aHgsut6flcFsjLt6PZZLKzTaiaFadTRVQUrKKIyyXjdMqYJTOyTcHt1NBUBbMoYXPacDgkFFVE1RRy8xXceYo+HqiskJuvYnfq/8npsuHKVZEkK7JqweES0DQJSZZi6bHjdLhRVAGH04rdpSIoKoom43aJ2JwSgqpis7kpzMtFtSmYBTNOp428fDuSJKGqMnn5Dmx2BavVitOtkZ/vjM00p1CQm4fT6UDU9LGX83JVbJoNUXWgOVRy80Q0TUFVbbjdGrl5dkTBhiw7yS9w4XQpiKKM05lLUXEeqiqjKCJ5BRputx1ZlsjNs1FU7MLpdGB3KOTmaThcNiRNRbXJuF0qLrcD2aZhc6gU5NlxumzINpXcPDvuPBlJtqLZZAqLnDicCiaTCc0m4XLbkGUZiyUHu1Mkv0DDKmQjKxacbgHNZkFWJBRZRVElxI/VVA3WTl1Ys/Z5mjbJLlnvQe/SpboUXHkOVletJCEhgb7+3iv28HS5XJc8O10u1xWLf7h48ZUXqQkeYv3OdSxeV05jbxBfxEMw4rui8kd9BPsCeKNeQoeDhPqC+Lo9+Lt1QxeKeglFvIR6PAQO1+EfNIZRH8FuL8FuH6Gol0C0AV9PDd5oDaGoD19HPcFub3wZivgIdHkIRXw094ZojAbwdwfwR334e+rxR2ti8hCIevF06SbUH60m1OWhuauZ5q4mGrvDhLuDhLoDhCMBAl1emvpCBHt8+LobCEd9+DrqCEb1NPq6G/D3+PFHffh6dPmjV/YYth5poqSqBLVEoqH5EH8Y+N1wZ58vRMLZs2e57rrrLrqYqqurPztgQgKrVq4iLy8PRZMRFGu8mvvCqu7Bm8rgW+zlVKN/2tvuJ+13OWEH36oHTaVJzInf6D6p+v/jPa4He3QOTh0nagIW2Yxku6CKX7PGw18Yn6DqVeuf1CTgwv8+uO/g9gubIuQI2R+ZZNlMQkICgiiSYzZdMNWdjKSI+lSqioik6A99q03CoomYFQGzKmBSrOTIFnJkKyZVIFsyY5ZFBFFFlh2IkobZok9NKsoCgmxGVEyISg6inK2bH8WGrKj6b4gKVsmM2WpClFQ0m4wky1hFK6IsIKsikmJBUgQk1YJFyESUBRRNRJDMyJqCpOkjBVhlGVGRMFlzEFUFUROxyAJm0aoP+G3N1k2eLKGoFkyWhVgEK5KqvwSYZTOipiLb5UuOYbxphk2Ij44g2vTzJqjWi5YmKSd+HkSbiCALyLKKoqpYRTOSrE/PapU+MuKibEUQBUTJoht32YoomRFlE6JkxSpmfyTBFDMeFkTFhKSICJKE2WJFtSlIqhlJsWAVZSyShkVWybFKWCQJSdZnLJMUAVnRf0MQc7AqVsyqgFkR9PMdO9dmRSBHtmBSrPFzb5Jj64q+3awKmDURiybG97HIgp6vFCU2/aI+Za/ZasIiWJBVhYSEBGRFRZQUFFVCUkxYhGxMZjOKqiIrAlYpG1G2oGo2fbpbWUDS9P0FyUK22YRVFpEVEZM5E7PVjKgqCKI1dpwkJFnAbMlBkKz6GLGyFatgwSIKWGURizUHq2hCsamIqozFog8OL6kqJqsZi2CK5UkLFjETq2hCkjU9r1uzsUrZyIqEVRAQJKt+LqUcrFImomJCViUEScBk0f+7pJoRpGyskoCo2vTvxSysUg6CrGCxKJjNAoJsQdIELIIJkyULUbIiShbM1mxEyYKkiFiEHATRhKLJiIqAxWLFZBawSgKCYsEqZCNJCpLqxCqLWMUsRFlBEEXM1iwsgglZtqOqTgTJiqRYUG0akqxiEcyxe4GIRchGkCz678hW/X+LVmRVRJQs+vWqKbH/Ytavf1VGkKyYLdmYLDmIioysilhFE5pNRdVkTOYsJFnA6XIiShZMlmwUTUFRB3/ThKqJiJIZk2UhomxGs8soqqT/909oLjV4fQ7edz+PLJoFi82KVdMlqFZkm4jNoefXX/7yF1fs4Xn8+PFLjOjx48evWPzDxdUwooFuL6G+IN6IF1+Pj1BfEH/UR9PhMJ3PttHxbAtdz7bSdiQcKxGtIdBbT337IQLdHjqOtdB+tJm2Y00Eez14ozUED3to6m2k+9ku2vpbaetvo+uZLtr622jta6HzWCeBzgBt/e10Huum/Vg7Hc800fFMmI5nGmk71kT70VY6jrXQ2Osh3FtH59FWokcjRI9G6D7WRdexDrqe6aDjWBvNh8P4uzw0H9XDth1pJPpcB839+vZAxKubXcOIfiYJACkpKfEL6brrruMvnzKN5UUBExI4deoUK1auwOl2oNgvfTu9sCTzkzoC/V+deT7JDF72W7H90uF7LjQkoiZctO9nafCGaHNryHYJQbWSW+S+KP4L9xU160Vv9J8Wp2gTdH2K+ZVsIoJmje+vH0+VhIQENKcNm8uOqEmIqoxs05BtakzaR3JoSHYN0aYgaDKCKiFoSkyyvl1VsMoais2FpNqwStIF8SjI9sHjJCJpAoKiIsgSompGUhyoDr00yiIqSJqAYldQ7AqyTR+UX9IEJNtHpRuipj9kRdWKoImINr00T7TJKE4NQZWQbHpaRU1G0CSsikUv7ZXtqKodQTKj2CRszlxsrlz9wWMTEO22WCmw9aLjKnzCOfmkPCLZRH0Yp9gLh+KQkTQR2a4gqhKiKmGVRQRFQNKkuERVQtJERM2MqJkQbbGlZkJ2WJHtFqTYNv2/y4iqnldEVUBUNGTNgaRJqA4J2SYhqRpWVcWiqYh2DdGmIds1FJuCokloNl02TUK2yUh2Fcmm6ku7GjvnCqKmINh0iR/7LGgKok1FduhxSzY1to9+DmSboktTkQan3rWriKpEQkICkqYgyCqKXUFQzHr67U4kxYGkysiDx1/W85NiHxxeS0axa2g2Bc2uxgy4FJsiWEN1qKgOPV7Voc9QpsS2ffSdqoe1q6g2FVmVUW0qNpd+bSg2BYfbEZvUwIHdbUexi4iqhObIRbW7UB1abLQEBcXm0ks47TKy3YJFyUSym/R7m92O5nTG7lcWZLuIrKmIshx7QbUiaxY0ux2nqxBVc6DYBFSHboRkm4RsE1HssXOrCTHp14dsE1DtEoqq4XDm4nDZkTULqkPWJ1hQ7fqsQQ4FSdWwux3YXPpLnGJ3oNices2GXdB/S7MjaSqyXcHmsmNzOvQXAJumL+0ajlxX7DqVUR2qfl40GdWuT49pd9pwup2osXWH24ls06c7dua5UR0qFkmfllN1qDjcTmwuJ7JNQXMq2Fw2ZJuM5lSxuVQ0pxY7b1LsmHzKsGoX6HLuzxfJ+bES0diIKAWFuUPSRnTSpEnxZ+ekSZOuePzDwVUxohEfwR6/Xl3do5eM1rbXsurpFax+egWV21ewfPMS9vv30Ha0CW+0Fk+klqb+IPv8u1i5ZSmrti5jycYyDrXsx99bh7/Xw6FwLau3rGXFpkrW79xE1fb1rN2xgbVPb6BySxW+tiA1oXoqt1axZlsVVdtXUfX0SqqeXsmqLStYvXU1KzYuI9BZj7ftEGu2rqJq8xqqNq9h9ZZKKrfq+63aspzq4F6aD4fZ49/Fko0VVG5bzvJNi3m6dgvtx1oIRv2GEb1MEgDC4XD8Ypo7d+7lBYxd1K+88goli4r1nucXjLs5WB1+YS/yiwyjU/5Uc6o4Y0bUruv/uvEoTvkSyY5LTcbgcD2DQ/dcaAg/big/ydw68x1INhF7no3cYjfly8ooKiukoDSfgtJ88kvyyC/JI7fQTUFJfryaN784L77Phcov0bcPViEPhi8ozadokR62oDSfvKJcSitKLmrqkJCQgObSyCvKw+a2k1dUQH5xMe6CAtwFRTEVk1tQRF5+PvkF+eTl55MXW+YXFFBQWEBuXh6FRYXk5efjzs/FXZBLbmEeuUX55BYWxuIrwF1QGJer0Im7II/cojxyix2480tjnQdy0Zx5qC4JR74dd5EbV6EDZ4EdV4GTvGJ3rNmGm9xiF458G6pLRstVcBXn4SrOw5Zvx1HoxlGYiy3fjrPAjbMoF2dxLrnFueQVuCnIKyU3t4iC4nxUu4pVcpAjqGRLOeSoOci5LkSbHO/gMNjjdvD45hXnkleU+6k9b12xsdkGwwyOqGCWTbHhupzY3A5c+W7chQXkFefjLszDme8kryhXD1vgxl2oTxbgzHfhKnCRV1RAXnEBeUV5uAvycBfk4y7MxV1kx13oxF1YRG6hfp5zixzkF+djz3Wj5TuRcm24ivNwFrpxFbhw57vIL3BTUOCioNBNYYGb/II88gvyP6aCT1VBYeEF6wUUFhVSUFhAfkE+ufl55Oa7yS104S506+kszCO/uBCb24lk119OEhISkO0ykmbH7nbgyLOxaHE5peXLWFSxnJLyckoqSiguL6a0ooLi8jJKK0pYVF5MSUUpJRVllJaXULKokKJFxfr3ZSUUlxVRtqSc8mWLKSovoqSilMXLl7BoSRmFiwopXVxG+bIKyhaXUlZRwpIVy3Dlu9HsCppDwZbnwJ7nQLGJ5BY4UZxOvWrbrY/HK2kakuZA0uxoLieKQ0ZQBVR7LrLNiebS0NwCssOE7DQjO0Rkm02Xw4rszEGyS8g2DdWm6C9oDguy3YJmt6Ha8xFVB6rDguLMQXboLzeiTS+R11/MRUSbBc2lxMauNaE5BERNRbW7sDk0VLs1dj+1Y3M6sTsdqC4bks2O6pKRHVZETTfJit2Oze1AdUmINguq04nNnYtsV9FcTpx5+agOO4pd/x+Spk+xLNttKA4Nm0vD4dLQ3HZUlyP2WTf8kk3D6XbizHUi2+048wqw57r1FxJNQ7bZ0Nw2bG4XNpcb1akhOyRUlw2b24Fkl2MG1Ibq1PRxmp1yfNi+S4axc8amhL6MUVcukVtFzdPQcmNyaxQU59He0TokRrSysjL+7KysrLzi8Q8HV61qPuLFF/Xh7/Xj7/EROhwix5XDDeO+xfh7xnLj+Ou579F72Vn/NOGjfuo7D9H+bDO2UoXrb/sWI8Z/m1um3sT6/WtofiZI67NN2EsdXH/bjYy5fSxjbh/LrVPGcMuU0YyaPJrJ902lodmLqyyPkeNHMW7qOMbdfhtjbx/D2NvHcNuU0YyefCu33zcZf2s9m3evZcIdtzFm0hjGTrmNMVNHM/r2W7l16ihGTrqR0tVF9L0QZUfDdh6e8RA3jL2BUZNHMvG+8SzbtITWoy34okbV/OWQABc3vO7o6Li8gLGL+t1338VmtzF7/izSZ6eRNjuVtFmpZMxNZ0bSdO6+7y4m3T6R+6bdS1JqIrPnzSJjbjpps1PJmJNOxpx0Zs/LYPb8Wbrm6Zo1LyP+ffqcdNJnp5ExNz2+7aOws5gzfxZz5umaPX8Ws+bNYtbcDF3zMuLrg3HPnjeLjDlpZMxJJ21WGumz0kibrSt9tr49Y66u9DlpzJ4/iznzZ5M+O43S8hIO1By4pPPL2XNnOXPuDG+deYszZ8/onV3OXTiP+cWKd5Q5e4azb18Q19kzH8V5wb5vnXmL7Tu3UbyoiISEBDZsXk93tJvXfvELTp48yanTpxk4eZKBk6fiOnnyFCcHTnLy5MU6deqUrpMnOR1bP3lygIGTA5w8NcCp0/p+A3ENxnmak6dOcvLUSQZODjBw8gQDA6c4c+Ytfv3Gb1i7fiPLVy3h1V+8wpmzZxg4dYKBUyc4eWrgonDn3j7L8y/8DEE2kS1kcaihljfPvMXAqQH+MHCC3w+c4PcDf2Dg1EkGTg0wEAurp/1NTp9+k7fOvEWO1cTkqXdx930P8tAPv4/slOk7coRf/PIXDJwc4M233tTDnT7J6TdPx3Xq9Cn9P576BMWOw+k3T3Ni4ATh5kaWLl/CnAWzqD64n2hvD7/69ev6sTx1Kh7uxMkTnDx1wbE9fZoTJ09y4sQAAydPcurUaV2n9eVHYQePzykGBk7q66cHeOutt2jv7GDl2krqAx5OxdI+mEb9XA58TJee60+Tfs5j6xfliY+26+n66Nyde/scDd4Gpt45lZnJM0lISMAsmjlUW8dzz/+MN373Bn/80594++3znH/nj5x/5x3Ov3M+pnd4+/x5zp9/m/Pn3+bt8+d5O7b+zjvneeeddz62/yfp4vj0sO/w57/8maJFJaSmp5CcmsRPZjzBAw89wL333cX3f/A9nkpMJCk1g6S0JJJSE0lMSSEpNY2k1PTYeiLJaUkkpWSQlJJOcloSKbNmkJwxg6S0p0hMnU5SagrJqSkkp08nKe0JEtMSSUxNITklicTUGSSmzSApdQbJqckkpc4mKTWdpLSnSE57gqS0RJJSk0hOn0ly+kwSU2P7ZswkKS2JmckzmJn8BMmpT5GUlkpSWgbJqckkp04nMW0myRkppKSmkJyazMyYktJmkJQ2naTUJBJTkklOS9XTlzaTlIyZJKelkpSSSkp6GonJSSSnppGYkkJyWiqJKSmkzZod2yeZxLQUElMTSU6ZoR+ftGT9mKTq6UtMSyUxOZGZSTOZkZRMYnKaHm9qEo/++DHuuf9+HvjeAzw1cwZz5s0nY24G05Oe5NEfP8r0mTP4yfQneHLGdJ6aOSO2fIInZzzOkzN+oh/rjGRS0i9V8uD5Sp1JYspMklITSUqJ6YLtiSkzP1pPSyQpI5nkmFJmpeB024ds+KYTJ05cdgffa4UXX3mRmsAhNuxaz+K1ZUNmRANRH/Wd9XijXhq66mk51kJTfzOp2ancMH4E4++ewLdGf5snZj1B+EiAUL+frp+2k2PP4sbxIxg1aST3PHo3B5v203g0SPMzYX6S9hj/OuJfuXnSSG6acCMjJ97ETRNu4pu3fpN7H72HjmMdZKnZ/Pv132DU2FsYP3U8E++YwMTvTGDs5Nv41shvcu/376Kjt5my5UXccMu3uXnszYwadzMjx9/ETRNu5Iax32bE+Oup2lVJ+7EWWo418XTd04y/ewKjbx/D9eNu4KGnvkd9Wz2N/U34Il68sZLfL2tEA93eS4xo8Zpi3Yg2HWLg5B+GO/t8IeJXpizLjBgxgnfffffyAsYu6vfee4/FixejqnpHCovFjMlkIseUw9y5c3nkB49w77338NhjjzF//nwWLlxITk4OCxcuwGIxY7VaEEVRnwNZFBAEAVEQEEURQRDIzskmMzOTHFOOrpyLZTKZMJlN+nJw/eOfTSbMZjPZOdlkZWdhsZhRVL2zgCAIF8kqWLFarVhislotWCwWTGYTNpuNs2fPDs2ZuEyee+6nX9lhSD748APef//9y9r35MkBZs3KIDsni+bm5i/0ewUFBdx221i+//AjzF8wn+7u7i8Uz2fx6quv0dgYHpK4P4sPPvhgWH7303jxxRe5//77mTZtGgkJCSxevHi4kwRAWXmZfp2aTMydN5dJkydxww3Xc//997EwM5OsrGwyszJ1ZerLrCz9fpCVlUV2dpb+Ob4tk6ysLH09O5Os7CyyB/eLfR4Mq++b+VGYi+JZqP9e5sJLFf8uk4ULF8S2ZcXvk/PmzWPO3NlkZmbG0pjNgoULWRgLo8eT+ZGyYtuyBuNcSFZ2djyuBQsWMHfePBYu1MNl5+TERiVYyMLMhWQuXEjmwsyL47/gmOnHQ0/D/PnzSUlJ4Z577uHmm29m9JjRpKSkkJqWRmZmJikpyfzgB4/wxBNP8Pjjj/PEE08wffp0ZsyYEdN0Zs6cQXpGOrNmZVyktLQ0UlNTSYspNa6Ui5Sckkxyckyx9ZTUFNLS0+KaNXs2breLv/3tb0N233z00Ucvq4PvtcIvXv8FtaEaNu7eQEXVIhp7g/hjPeGvmBGN+vF2e/D3+ggcjnUcivppf7aDzfu3cNud4xl/9yTG3D6O7zx0F9VN+2g+1kjbsRZSs1K4eeLN3DLlFn6S/jih3iDh/iCBHi9CnonkBdOZa81grjWDWeZU5lozSF44A61Ypqk3yKLVxZgUE+nzZjH5ztuZeMckJtwxkZkZM8mSFuIqsdN9pIM1mytJnZvMAtN85pvmMdc8hzmWWWTkpDFPmM1u7w6aD4cJ9vpp7m/hqYxERowbyW13jufmybewZONSOp/rwtvtwRPx4OvRe81/qVLkLk/cjIaiflqPNFO8phitRCbc5ePkmwPDnX2+EPEr8/jx45+rx9/gRf3+++9z/PhxOjs76ersoqOjQ1e7vmxpaaG1tZWWlhZ27NiBTbOhqRqqqrJ69Wq6urro7Oyis6OTzo7OePiuri6am5oRrAKJiYkkJyczY8YMZs6c+bk1Y8YMkpOTeeqpp0hKSmLJkiV0d3fHfrtTT3tXV/xzR0cH7e3t8bS0t7fT1tZGNBrlb3/725U/C5fJq6++ytKlS0lISCASifD3v/992NLyZTl//jwHDx6kpqaWX/3qV18ojpMnT1JVtYbHfvxj5s6ZS0NDAx9++OEVTecbb7zBunXrcDqctLa2fuWM4dXmgw8+oK+vj8zMTBISEsjLy2NgYPhvfs888wy1tbX4/X5qampYt24dy5cvZ+vWrTQ0NODz+fB5Y/L58Hm9+vILyX/JtmAwSDAYii0vVIhQKKagrkv30RUKhWmoryc3Nzf+oq0qKgcPHqSpqYlwOIzf79fjCX1MwWA8/kEN7h8MBnE6HHHTlpKSwq5duwiHwxf89sXp/LQ0BgMBgsEgkUiEHTt2kJiYyCOPPMIjjzzCtm3b6OjoQNM0ysvL2b1rN/v27ePQoUPs27uP2tpa6uvrL9KhQ4cu0YEDBy5RdXX1xdpfzf79+z9RF+63d89empubee+9oRtHdPC3vg786c9/YumqJWzbv5XNezcNnRGN+Aj2+vH1ePFGGvD3+PB2e2k52sauur2Mu3sS4+6cxJipE5gy7Tvs8O2g82cd1LXW8tCT3+PWqbcyctJI5lhn03G8HU93A/4eLx3PtND/QpTu4230/KyTnp910v9ihO7jbTT1BvB31tHaH+aZl4+xcdcWxt4+iTFTxjPuOxPYvHcz/T/vpfVwE43dQdoPt9N3vJcjz/XT/9PD9D3XS9/zvXQcbaPjWBtNfSH8XfpQUy1H2phryWTkxNGMu3sSN04YRXFlKZ3PdeLt9uCNevD1Xnkj2nKkmZKqEhxlGvWNB6mu2Uf1cjERAAAgAElEQVRXV9c1N9/8RVfm56la+CIX9QcffMD58+c5d+4cb7/99meaun/84x8sXrwYs1kvZbVYLJcoXvL5GcrKysJsNuN0Omlqavrcaf8qcO7cOQYGBkhISOD06dOXXfr4deZ//ud/eOedd3j77bc5d+7cFTeK77zzDqdOneLNN99kYGDAOOYx/vjHP5KQkMBbb711WZ0bDS6ft99+mz/84Q+cOHGCM2fOXJE4//SnP/HLX/6S119/nV//+tdX5EH197//nVOnTnHmzBlOnz4dzwfvvPMO//3f//2l47/SDJUR/ctf/vK1uQZeevklUueksH7HOrbsGzojGu+s1OPFE20g0OMn0BOk+7keCpYVc+vtY5l0z3e4YcwtPPD4Q9R31dPyTDM7G3Yy6b7JjL1zPCMn3oyYJ9L+bDu+Hh8NXfVsr9nCtgOb2XZwM9sP6uub9q6jrukgTT0hwtEA/g4PbUdacFfkMmLcKEZNvo07HryL/f79sR7zfoLdPnbV7+LpgzvYWa3r6QPb2XZgC/u8u2nqDRPo9tLQVktjfxh/V5B7Hn6Q0VMmMP67Uxlzxzg2VW+j5VgrvogXf68Pf59vCEpEmyhaXYStVKG+8SBFZQXk5xfwv//7v8OdlT4XX/jK/KpWD/8zYBx7g68CRj40uJYw8utn88qrr5A8K4lNuzYOqRENRvQ2ouEjIbxRD6G+IJ3PdbNx/xYm3X8HN00czejbJ3LTuNtwLy6i6WgTLceaWLNzDWPuuI2xd45n1ORbyV+aT9uxVhqPNrK1fiu3PziVsXeOZcr9U5h4z0QmfHcC4+4ax/KNy2k/0kFTTxNNPc20HW1lnrKAmyaPZuSUsTz45MN4OjyE+nw09vs52LSfe358D2Nuv43bvzuVqd+dwuR7JnHrlFFIeQJtR1rwd3nofLaNxiNhTE4LIyeMY/K9d/Mfo29ilnkerUc6CPSE8UV8BPr8BA77r7gRbTv6UdX8oeA+VIdMWVn5NVdgYhjRaxDj2Bt8FTDyocG1hJFfP5tf/PI1Muans2HH+qE3ohEvvoiHxv4Q3i4fUoHKuDsnMPr28Uy89zvcPHEMKQtm09zXRrDXT8fxVkrXLGLUlNGMuWM8oyaPYdmmlbQ900r7sy1UbCzj+rEjuHHCzdw86VZuHH8zN4y9kdG3j2Gft5qWvjb8HQGaepsJ9YSYMX8mIyePZtTU8Tye/hTh3hC+7nqaj4bY6dnByMmjGDH2JkZNGMWoCaO4ecJIvnnLN8lfkk/38S4ae8LsrHuamfOnM3LiLUy65y5GThjDQ0/+kLpmLy397fijgY+MaN+XN6KBbm9cwYiPtqPNLFpTglIkUN96iNwyF4WlRddcsz3DiF6DGMfe4KuAkQ8NriWM/PrZ/PJXrzEnczbrtq/VjejaMsI9AQI9PoJXeOihYMRLMNJAx7EWdjfsYcr93+HGsbcw8bt3MHrqeKZnJBKONNEYDeLvrqXjmWbci12MGD+KsXdOYdzdU9m4byudz7bTebyZivWlPPDY95j2+MM8+BNd9/7wAabPmUF16CBNh5vxd/lo7A0T6PbzgxmPcPPE0dw8cQyJc1No628jFPHT2t/EtgPbeeBH3+PBx77PQ088zENPPMyDjz/EtMe+x5rta2k/0kHXsW5KVpZyw9gRjLtzEqOnjOfeH0zjYKie1v52vF16Byx/1IuvpwFfTz3+noYvdcxCUT+Bbm+8ZLT1SBOllcVopTI1bQdQFkkULyvi/Q+MElGDIebTjv3rr7/O4sWLvzYN5w2Gl46ODmRZ/tTZYox7gMG1hJFfP5vf/u4N5ufM+6iN6FAa0W4v4YgXf6eHrmOdiG6FG8fdwvg7pzBywmieTJ9B6+E2mnrD+Ltr6PppGxa3hZETb2X0HRO5/8ff51CojvZjrYR7vbQda6Spr5Xmvg6a+9p19bbScriV1iNtBCNBghE/zYebqGk8yHcf+S6jJo1m1KTbMNmttPW3E44GCHZ5CXU30hRtI9jZSDjSRFNPC8GuMOFIE+1HOvG3B2nr78DT6uehJx/m5km3Mv7OyUy9/ztsPbCDzme6CEQD+jipg0a0d2iMaNnqEtQSmeqmfWjlCqs2r+CDD6+tTrWGEb0GufDYnz17lo0bN3LXXXfFx7P7qgypY3BtU11dHc9To0ePZvHixbz++uvx7417gMG1hJFfP5szZ8+QLWSxYef6oTWi3T4aewKEe/0Eury0HWljr6eaux++j1umjmXc3ZMZfcdYKqoW0/FMG8FoPW1HG0lcMJNbpo7hpom38tTsRJr72gj3BPB11XIgvIfdnr3s8VTHtJ893n3s9uxhj3c3nnYPwUiA5sONVAf3cvuDU7l58mhumTKO8jVLaD/aQaDbS7gnQF1zA3s9B9jrrWa3Zy/VgYPsbtjDrvo97KzfTX1LA94OPx3HuiivqmDEuJGMv2sSt04Zw8x5SYR7GmnsC+OPeofUiLYdbaZ8TSlKscT+xr3YKlQ279l0bfea/1wBjYt62EhISKC6uppHH330krmODSNqcKW40IheqLvuuosdO3YY9wCDawojv342b775JgtM8z9qIzqEJaKBiBdvZx3BiA9vh4fu41HUIjuj7xjLhHsmM2L8zTw8/VEae0O0HQvS0F7D/Y/dx613jOGmiTczX8qkpb+VtqPNNLQf5PszpjH27vFMeeA7THngDqY8cDtTpk1lzJ1jmDFvOk19YYLdftqPtbCtZhPj7xnHLVNvY/x3J7Np31bajrYS7gnQdrQZMV/i1ttvY9L9U5j8wGSmPjiVSfdPYtL9k7jjoTvYXrOd5sPNNPY24uv08fD0Rxg1+RbG3HEbo6aOYunGJXQ82zb0RvRIs14iWiyxv3EPWrnCjgNPD3c2+twYRvQa5PrrrycnJ4dvfOMbn2gUDBkaSl133XXMnTuXb3/728N9KRgYXDYJCcYz67M4e+4sOWL20JeIRnz4uz0EYp2gfF1eWo+0UNtcy90/+C7/Mfp6bp58KyPGj8RR5iT6fAe7vU8z+jujuHHijXx73PWYnCbaj7XReqSJg417mTxtHN8c/R/cOGEUN04YyY0Tb+LGiTfyjVv+nRnznqL9WDPNh8O0H2umcGUe3x77H9ww7kbGfXcSO+p203S4kWDUS3N/iB+l/IhvjPoPbpo4kuvHX88NE67n+nHfZsSEG5h4/0QOhg/Q1NdIMBKg89kOilcWc8PYb3PzpJF8c/Q3eOipaTS01xLsu7CNaAP+6JeboeqTjGhpZTFKkcjBlv3YKlT21e8Z7mz0uTGM6DVOQ0MDc+fO5brrrosbBaNE1OBK8PES0SeffJLq6uqvzZiJBv9cGM+sz+bDDz+krauN/Q372LBraOeaD0R8sRmVPlLLsWacS1zc8+P7eeCJ7/HdH91PUlYKLUdC7KjfyrQn7uPBJx7ggcfvp3hVIR3PtNLSH2aXZxuPpf+AaY8/yENPPcxDT32fh576Pt978kHu/sGdOMtttB5pItzrp+VIGFu5yt0/uov7fzKNH6U9SXX4EE1HGvFHPdR1HGJmZiL3PjaNB596iGlPPRjXvY/fR7o1A1/ET7A3hC/ip/loCzVNB0mc9xTf+8n9PPTUNO7+wR0s3VxB09Ew/pgJvRJG9ONq7dc7K+ltRPdSvKaAnmOR4c5GnxvDiH5NePfdd2loaCAlJcUwogZXhOrqaqZNm8aOHTuGfWpbA4Mvi/HMujxefu0laoKHWH/VjGis+jriIXw4QOPhkN7bPBLE2xWivt2Dp6OGcK+XYNRDoNtDQ3utXqIa8eDvricYbcDbWYu3wxeTF2+HB2+HB19nA82HQ/i7G/B11RPu9dLQWUNDZx2+aICaFg+BaAhfxEug10Owz0tdWx3+SIi69gY8XR48XQ0fqbOBYK8+LJM/6qOhs56mwyHCUR/+znr83R4a2mvwddfj7/EMnRGNxuaaX1GAXCiwL7yb1btXcuS5/uHOQp8bw4gaGBgYGHztMZ5Zl8fLr71MXaiW9TvXDrkR9fX49DnYezz4eurx9dQT7g8S7g8R6msk0NNEU38L/u46fF21tB0L09jnp7k/GNtWR6jHQ6ingeb+IM2Hm2jqG1QjTX0hWvrDNPYGYibUR7jXQ+iwj2BfgGBfmGBvE75IAE93A95oHf5eD6HDQcKHG/H3BPS0HI6pP0TocBBv1Eug10+gN4C /x09DRy2NPT4ae3yEe3209AcJ9epV8kNZItp2tJniFQWxNqJ7WbVrBX3He4c7C31uDCNqYGBgYPC1x3hmXR5Xy4j6oxca0QZ8vbX4euvwRuvx9foIHg5T3xnA0xkg0O0hEKmPmc8aQj0NhHoaCEbr8XQcwt9dp5eMRvyEokFC0UBMfkJRH97OWsK9fkLRBvzROgJ9HjzRBnw9AbyRIN6Ing5vTx2+3no8EQ++aAB/bwBfry8uf6+e5sDhAN6ol/puPa2+7nr8nYcIRuoIROrwd9Xgj+qdk4baiJasKkQtlqhtP8jKHct5+ZcvDXcW+twYRtTAwMDA4GuP8cy6PH7+0s85FDjI+p1DXzXviXjwRj34ejz4e+rx9dQS6PUQ7g/R0OXBFwkTjIYJ9/jjVfDBaD3+mOEL93oI9XgIRr34OnUjGowEYkv9dxr7AgSjXkK9HgKRBoJRD57uWvw9XjzdXjxdPgK9QbxRD4FeD95oPcE+3Zx6I178PR/J1zNYEhqbN75PL0kN9frwd9YQ6Kol1NOgG+NorGo+6sHf48EX1TtnXcljqLcRLdKNaNtB1u5aw5lzZ4Y7C31uDCNqYGBgYPC1x3hmXR4vvvKi3kZ0qI1otxdPZz3+bi++Lg+BiFdv99ntJRDx4e1sIBDxE4oGCEZ8eDrqaOwNEIx4CXR78HU10HQ4hL+rIR7f4NSXFymq9zYPDprAqFc3hFHdDAciF6zHv/MTiH//McW263H5P1qPeHVF9d8IXmA69dEBruzxC0b0NqKLVheiFonUNh9g4651nDWMqIGBgYGBwVcP45l1eVwtIxrs9urz2HfpHYpCUT/+Tv13GlprCEZ8+Ls8NPUFaewN6sNIxcN48XU24OtswNNWRyjqJ9wTuPJp/IrrQiNa13yQDTvWGkbUwMDAwMDgq4jxzLo8rpYRHTSW9a01hHsC8bExQ1E/Lf2NcYPa1BfC015HY69uSAcNajDiixvTwbiG2xgaRvSLYRhRAwMDA4OvPcYz6/K4mlXzvs4GGnuDeDvqaeoL0fFMa9x8BiN6lfrg53BPIL5fS39jfPtgPM2Hw8NuDA0j+sUwjKiBgYGBwdce45l1eVy1qvmID19nQ7w0tKkvRNHKfJQiEaVIZJ9/N+Eevee7p72OguW52BepFCzPpaGtlpb+Riq3r8BZbiN3iZPdnh1xA/vPotYjTZStKUIrlqhtPMC6p9fw1pk3hzsLfW4MI2pgYGBg8LXHeGZdHi++8gK1wZohN6KhqN6zPdDtpaW/kYp1i9BKZBraatnr20VDWy2Bbi9NfSEa2mp5unYrrUeasC9SKaksxN/lwVGmEYz42HpwE2ZXdrx6/sJq/uE2i0NtRItX5mIrkalvOcRBXzX/+df/HO4s9LkxjKiBgYGBwdce45l1ebzw8s+pCVydqvlBNR8OY3Jmsb1mC90/7aD5cJi2o83xDkmDJaMNbbUUrcynamclwYgPV4Wd3Z4drN21mrKqkrjx/GcyoqWVBcgFFoJdXn764vHhzj5fCMOIGhgYGBh87TGeWZfHT3/+Uw74q4d8rvlgxEdDWy2hqJ/G3iByocBe3y6qg3txlttYtmkxTX2huJn0tNfhqrAzR8igOriX6M+6WLFlKdPnPkFaTjI1TQdo6W8k0O395zGi/Y0sWl2IvVTG21bHz15+brizzxfCMKIGBgYGBl97jGfW5fHyay9TG6oZ+ik+Y4YxGPHR1BfC7Mpmt2cHjb1Bilbms0CZG+8VP1hFH3muk5Vbl+Eo09jj3YmtVCHQ7WX9nipMziw87fpQTv80RvRIE+4KO1K+GV9HA8+99NPhzj5fCMOIGhgYGBh87TGeWZfHz1/++VXrrDRoSFuPNOGqsFNSWUjfC1G212zB7MqOl4j6OhvwtNfRfqyFFVuW4ijTWLd7Dc5yG70/j+Dv8jBHyOBgeP8lQ0ENt1kcSrX0N1KwzI1aJOLraOCFV58f7uzzhbiiRvT111/H5XIxbdq0L5UoAwMDAwODy0WWZebOnUs4HP7UfQwj+tmcOXsGd6GLrfu2sGnPhqsyjuhgj/na5oOI+RZKKguRCwW0EpmW/kbaj7Ww17cLtVjCUaZhzTWx17eL5sNh3IsdlFQW4qqwU7629Gs/qP2gwQ5G9M5ebUebyVviRMgzcajlAFsObOTwM7384x//GO6s9Ln40kb07NmzbNy4kUmTJpGQkEBCQgKjR4++Ygk0MDAwMDD4v8jJyYk/f0aMGIEsy7z00ksX7WMY0c/m17/5NXOz5rBp18YhN6LBiC9e5T44Dmig28se704OhPbFB68fLNmsaTrAHu9OvB318UHsgxEfe7w748b0614C+klGNHexCyHfzL7wHlbvXkm1Z98/hxF99913SUhI4Mknn4xf/BfKMKIGBgYGBleLC43ohZo0aRKVlZWcOHHCMKKXwW9/91vmZs1h8+5NQ25EA91evB31BLq9hHsC8fadzYfD8YHqwz2BeM/5QeM1aMIGq+DDPQE6nmmNxzXcZnG4jOj+xr2s2rmcmsBBPvxnMaLf+ta3PtWIGjJkyJAhQ8OtC42oUUDy2fz2d29cNSMajPgumhkp3BOIfw5GfBcNdD9owhraauOzLA32th+ccSkU9f9Tl4gOGtHa4KF/jhLRCzGq5g0MDAwMhpPLqZo3+Gx+d5VKRENR/0VTfPq7PHENfnfhmKC+zgaCEV/chF04BulgfF/39qGGEb1MjM5KBgYGBgZXm8vprGTw2fzmjd8we+Estu7dwsbdQ1siOmg4LzRWF5qtQWN54fcXbr/QnA23QRxuI2rN043o8u1LDSNqYGBgYGBgcG3y+z/8nnnZc9m4a8NVqZo3dGWMqJCnd1aq3LWC2lAN15YNNYyogYGBgYGBAfCbN37NnMzZbN6zachLRA19eSPaeqSZ3MVOxHwLe0O7WLNnFYf8B/jggw+GOyt9LgwjamBgYGBgYMDAwAnm58y7asM3GfpyRrTtSDPuct2I7gvvYdm2xeyt38OHH3443Fnpc2EYUQMDAwMDAwM+/OADevt7qPbtvypzzRv6kkb0aDOuMjtivoWDLdUUVOby9IFtRhtRAwMDAwMDg2uTV159mZrA1Zvi09Dl6+PjpLYeacK9xIGQZ6am+SDuxQ627NlslIgaGBgYGBgYXJu8+PILV3WueUNfXK1HmihYlYdSJFLXfAh3mZPt+7cPdxb63BhG1MDAwMDAwACAFwwjes2o9UgTJVVFCAVmGlprWbF5Odv3befDfxglogYGBgYGBgbXIIYRvXbUeqSJRWtLUIpFDob2c8h/kOPPPzvcWehzYxhRAwMDAwMDA8AwoteSWo40sWhdCWqpTH1LDQNvnhju7POFMIyogYGBgYGBAWAY0WtJLf2NFK8uxLZIoaG1lt+d/O1wZ58vhGFEDQwMDAwMDADDiF5LGmwjqhTrnZV+d/J3w519vhCGETUwMDAwMDAADCN6LckwogYGBgYGBgZfK154+eeGEb1GZBhRAwMDAwMDg8/NP/7xD958802ee+45gsEge/fu5a9//etXYo7wn79kGNFrRV9FIzo4q9MLL7zA/v37aW1r5dVXX+Uvf/nLp4YxjKiBgYGBgcFV4q233qKlpYVgMEhVVRUHDhxg3759NDU14ff7GTg58H+G/8tf/sKf/vSnIUvfC6+8yMHwIdbuWkfF+nLCvUH8hhH9Sqr1SBOla4qwLVJ0IzowdJ2V3n//fc6dO/uZszZ1dnfQ3tGO1+8lEPSzafNGdu/eTUtzC4cPH+a99967JIxhRA0MDAwMDK4CzzzzDAcOHOCNN94AoKenh/7+fg4dOsSmTZtYt24dgaD/E8P+53/9J6/96jVKF5VSUVHB3//+9yFJ489fe5HqxhrW7FlH2YZyQn1BAoYR/Uqqpb+RklV6ieihcDW/PfHGkOQJgNdee5XMzIXs3r2Lc+fO8L9//99L9vnzX/5M5bpK1m6sYuWaFRx99ijdkU4GBgb429/+Rnd3N/v37+f8+fMXhTOMqIGBgYGBwRCSk5PD8ePHKSwspLm5GYCzZ8+yfft2PB4PNTU1rFq5ivLyclZWruT5F57nZz//GX/7298AeP7F53l633Y2bd/IwsyF/PDRHzIw8H+XnH5Rnn/tBfY3HjKM6DWglv5GKtaWIRdaqW+p4Q8nfz8keQKgurqaH/7wB5SVlbJ583oafHW888d3AHjjt2/wymsv09rRQmlFCYuXVlC1bjXdkW42b9lMW1sb7733Hv/1X//F9u3bue+++/jzn/8cj9swogYGBgYGBkNIQkICfr+fmpoadu3axaFDhzhy5Ag9PT1s3LiR/v5+VixfQVlZGe48Fxs3rWfHnqcJNgX5/Ynfc8hziGVVS1m2ainLli0lJSWFvXv3DklaX3vjV1Q3GSWi14LajjZTsqoItUSivqWGU2+dHJI8cebMGXJyssnJyWL58mVULC5l6crFHH/+OM+/+Dwbt29g2+6tlC8tw5XrYsWK5ezYsYPe3l62bd3GK6+8wvHjx9m2bRsej4eEhARef/31ePyGETUwMDAwMBhCEhIS+Otf/8ru3bvZunUrL730EuvXr2fOnDlomsbzzz/Pnj17qKioQFJEikoK2fr0Frbu2sKazatZu6UKR4GdjVs3cPDgATIzM3nggQfiVfxXijd+9wbV3kPsCx1kzW7DiH7V1Xa0mcLl+ajFEvWttRz96VH+53/+54rmCYBt27bx4IMPsnz5Uurqalm+YjGuQjtrn17D1v2bqdy0isoNq5BtEppNZfnyFfT39RP0hZCtMppmo729nWeffZby8nISEhJ4//334/EbRtTAwMDAwGAISUjQH7W//e1vWb16NdOmTSMhIYF/+Zd/ITMzk4aGBjo6OliyZAmKKqPZVNZtXEvl+lWs3VLF+m3rKCwvoGhRIevWr8Nut5Oenn5RqdKVoLiilKTMdLbV7aRq73oWrS8j1BcwjOhXVK1HmihbU4pcJFAd3MfSyiX8+te/vqJ5AmDv3r2kpaWxatUKli9fSm6ug+Vrl7L66ZUsWV9B5ZZVVKwqJ9uaSW5+LqtWVPKz4z9j5eJV/OjhH/Nv//pv/Pu//zuCIHDo0KH49TCIYUQNDAwMDAyGkMEH74cffsjevXuZMmUK/+///T/+7d/+jR//+MeUlJTw3HPPUVVVRX5hHgsy57OoopQN29ZTtXkNVZvXsGzNUjSXisfr4ejRo5w7d+6Kp3PNprUsULLZ4dnDmr3rKF23iGCvn2DUSzA6/MbL0MeMaH8TJauK0EpkPG11rN+6jt/85jf/n733Co7rShM0631nNuph66FjdzuqO2p2ZrdrO7p3Z7qjp2M2ZrZiZqe7pqKsPL0DQILwNhPee++RQHrvvUN6eNCLRiRFEfQSnUiK3n37kEBKFCmVRAKgOHW/iD8ycXHuyZPn3gS+/O855674efH48WNOnjxBJBKms7OD7JxMGtprqOuuoaazivquOtJz0tiyYzPllWWYjWb83gCZabv513/5b/gX/8O/4F/+j/+S999/nz179ggiKiAgICAgsJYs/+NdXFwkMzOTt99+m5/85Cf85Cc/4Wc/+xlbt27F7/ej1+upqqliw6b1ZGSm0zPUTWtPC02djbT1thKfjKXWaVwNKhur+dUHv6VfM0zLWLsgoj/wcMXsiBpL2FmShtqpoKGtnqNHj67a+QFw69YtZPIxOvvbqeuopaGznrI6MZt2bCRjdzrlleUcOHCA3u4+/vC7t/hf/uf/lZ/85H/iL//yL8nMzKSjo0MQUQEBAQEBgbVk+R/vrVu32Lp1KxkZGfzVX/0Vf/7nf86f/dmf8ctf/pLGxkZmZmaoqConNy+HDZvXU9tcQ+dAB12DnSi1Ch49Wp0lm5YprRLzT+/8igHtCC0SQUR/6OGKOyhvES+JqJLalhoOHz68qucIwNmzi3T3ddLc2URDWz3ZhVms37KOnKJsJFIJ0ViUnZk7+fnPf546x3/1q1+xbt06RkdHBREVEBAQEBBYS776j1ehULBt2zZ++ctf8hd/8Rf8/Oc/5+///u/JzMwkHo8jlUsRiUvZsn0z2QVZtPe10drbwqHDh1a9ncWVpfzyvV8zqBsVRPQNCFfcgbiplLTCbWjdaupb6zhy5MiqnycAJouB/qFequuq2LxtE9vSt1JaXkIkFqG9s42tO7bw87/5K/7qr/8P/tXPfkZ6ejpvvfUWZ86cEURUQEBAQEBgLfnqP95bt24RDocpKSnhb//2b/nFL35Bd3c3U1NTtLe3Mzc/R0lpMWnpO9iyYzNtPa109Xdy7PjKT0L5OmW15fx2w+8Y0g7TKmlD3CbGEjZh+gFIlxDPhzvuoKS+iO35m9G4VDS013P0yOpemofkbTxdLicjkiHKysWs37CO3LwcOrs6iETDtLQ3s3f/XjZsXc/f/eO/47/+039ldHQ0la0VRFRAQEBAQGAN+fo/XkhmRvPz83nvvfeoqqriypUr1NfX43a76erqori4mO07tlNUXMjs3MyqLMvzdarrKvn9ul8zrOqnY7SZyvYybGErhqARc9D42sVLiGfDFV9aR7QkDaVdTmNHA8eOruxKCt/Ep59+ikQiITc3l127dlFeXo7NZqOzq5NAIMDxE8fZvGUT69avo7S09JlMrSCiAgICAgICa8iLRPTgwYPU19dTXV3Ntm3b+PDDD7FYLDQ0NJBIJCgrKyMvL4/MXZkcPrw2l1trGqr53Xu/YljVR8doiyCiP+vpUawAACAASURBVPBwRm2UNYvYLdqJyi6noa2eI2t0rgCMj4+Tk5NDUVERtbW1TE9PIxaLuX79OiMjI+Tl5tHe3s7Q0BD37t1L7SeIqICAgICAwBryIhF9+PAhfX199Pf3U11dzdDQEBcuXEAkEjExMUFbWxvl5eWIxWIMBsOatPPMuTOY7AYUZgntw02CiP7AwxWzU1JfREbxDlQOOQv757l9+/aanCufffYZ9fX1iEQiKioqMBgMSKVShoeHOX36NKWlpXR1ddHR0UEwGHxmX0FEBQQEBAQE1pAXiSiAz+ejra2Nnp4empqauHTpEjKZjJaWFsxmMzU1NZSWltLQ0MClS5fWpK0Hj+xHYR6jY0S4NP9DD3fCQVlzKbtK01E7Fat2i88XEQqFqK6upry8nNbWVjweD1lZWRw/fhyPx0N7ezuDg4M0NDRw4cKFZ/YVRFRAQEBAQGAN+SYRvXbtGtXV1YyNjTE8PEw4HObkyZNs3LgRuVyOQqHAYrHQ0dFBIBBYk7buOTCP0jxG+7Agoj/0cMXslDWXsrMkHYVNxseLJ9fkHLlz5w7Nzc3U1dURjUYZHR2lurqaqqoqrl69Sm9vLzKZjMHBQeRy+XP7CyIqICAgICCwhnyTiAKMjY3R19eHWq2mr6+Pa9euUV9fz+9+9ztGRkY4d+4cKpWKhYWFNWnrvoMLKC3jgoi+AbF8aX5nSfLS/FqJ6M2bN1GpVJjNZi5fvsy7777Lu+++y9zcHHv27GF4eBiFQkFlZeULl5MSRFRAQEBAQGAN+TYRPX78OGKxGJlMxvj4OJOTkxw/fjz1jx3gwYMHa9VU9goi+saEM2ZD1FhCRskONC4VE/Egjx49WrNzZfm8bG5uprS0lJs3byKVSlEqlYyPj9Pf3//C9ggiKiAgICAgsIZ8m4g+ffqUzs5OBgcHGRkZYXx8nNu3b3P58mWePHmyhq1MIojomxOuuJ3ShuQ6olqXikDUz4P7a/elZZnbt29z9+5djh07xvDwMBaLhebmZvx+/wvLCyIqICAgICCwhnybiALMz88zMTGByWRCIpGkMqGvA0FE35xwxmyUt4jYWZKG1qXC6rasyXqz34RUKkWj0TA/P4/T6eTKlSsvLCeIqICAgICAwBryx0QU4PHjx8zOzqJWq9Fqta8lGwqCiL5J4YzZEDeVsEuUjsqhYHphivv377+W8+bcuXP09/cjl8u5fv06T58+/caygogKCAgICAisId9FRAE+//xzFAoFAwMDnDy5NhNPvo4gom9OOGM2SpuKSCvajtIm4/S5T17LOQPgdrtRqVTPrRn6IgQRFRAQEBAQWEO+q4gCTE9PYzAYsNvtq9iib0YQ0TcnnDEb4rZSMkp2oHYq1mzW/Ne5du0aY2NjyGQyzp8//0fLCyIqICAgICCwhnwfEb1w4QIKhYKxsbFvHGO3muw9MC+I6BsSrrid8g4xu0TpaJzK1yai+/btQ61WYzQav9OsfUFEBQQEBAQE1pDvI6IPHz7EarViMpley6QlISP65oQzZqOsXcTO0rRkRvTM2ovokydPUCqVqFQqjh49+p32EURUQEBAQEBgDfk+Igpw7NgxdDodOp1uTdeFBEFE36RwxmyUNBexo2gbSvva3Vnpq5w+fRqJRIJCofjO97kXRFRAQEBAQGAN+b4ievv2bZRKJQqFgo8//niVWvViXlVETQE9Rr/umTAF9K9d2tY6vms/vKjcN8VzIhq3I2otIb04OVlp8fzpNT1XALxeL0ajkenp6e+8jyCiAgICAgICa8j3FVGAvXv3YjabcTqd37oUzkojiOibJaLitlJ2iTJQORQcOnZwTZdvunr1KlKpFIVC8b3GMwsiKiAgICAgsIa8jIhevnwZpVKJRCLhzJkzq9CqFyOI6Jsjoq64nfJ2MWlF21Da5aisSuxe25p9cUkkEpjNZvx+P48fP/7O+wkiKiAgICAgsIa8jIg+ffoUv9+PxWJhcnJyFVr1YgQRfXNE1BGzUtJURFrxdlR2OWa/EY1ZvSbjiu/fv49UKsVoNPLJJ99v/VJBRN9wLl++zLlz577Xt4//nnny5Annz5/ns88+W7XXePToEYuLi3z++eer9hpvGrdu3WJxcZEHD9b+vsYCAm8aLyOiAGfOnMFoNCKXy7lx48YKt+rFCCL6ZoioZcKIM2ZD1FJMevF2xo2j6FwapLpxHjxc/b/LBw4cQKvVYjabuXfv3vfaVxDRN5zlexILApDk0aNHOBwO4vH4qr3GnTt3MJlMHDp0aNVe403j448/xu12c/369dfdFAGBHzwvK6L379/HZrNhMpk4cODACrfqxew7tAeFWUbbUAsVrWKsIRP6gA5jQI/pO8Q3SdR32fd1xvcRzJXsh+8qoS8cIxqzUdpQSHrxDhQOKU1DDfSP96367WEfP36Mw+HAaDS+1HkpiOgbzr59+4jFYoKILvH48WNcLtf3mrH3fblz5w5Wq3XN/hG8CZw6dYpQKCSIqIDAd+BlRRTgyJEjWCwWrFbrmlxy3XdoHwqTnLbBVspbxFgmjOgDWgzfQ5jexHiVTOfraqMrbqesuZTt+VtQuGSUd4roGu5YdRE9e/Ys4+PjaLVabt68+b33F0T0DWd6ehqz2bzma8v9kFEoFHg87lWr/+HDhwwMDBCLxVbtNd40jh07hkQi+c7rxgkI/CnzKiJ648YN9Ho9MpmM06dPr1yjvoF9B/cKIvoGiai4qZQdhVuRO8cRtRXTMdS26iLq8/nQ6/UvPXZZENE3nPb2dn71q/8mZES/wn/5//4zeXm5q1b/nTt3+Ou//mtqampW7TXeNPx+P//4j/+45mscCgi8ibyKiALMzs5iMpnw+Xwr1KJvRhDRN0hEY3bEjcl1RJdFtGe0a1VnzV++fBmpVIpOp3vpuRmCiL7hdHZ2kp6ezuXLz54AT58+/cb4Y7//LuW+6+++qU2w/Lsvy3/ndj95ytOnsFx98nmyzOeff87mzZsQiUq4d+8eT548+aP1fdf+WI5z587xzjvv0NPTw8OHD1PfNl/03l9U/9fb9HzfPN9nX+eZ7d/jGH6X8+Pb4qvfrJe3PX78GLPZzPbt29m/f/9zbRUQEHiWVxXR8+fPo9VqkUqlXLhwYYVa9WIEEX1zRNQZs1PaUExG8Q6UbhlVveV0Drev6vkxMzOT+lL0spOmBRF9g3ny5AnT09PMzsyg02iIRaMk4nESsTjxWJxIOEw8GmMqMUksGmV6copEPEYkEiIWDTM1mWBqKsFkIk40tS1OPBYlHo8yNZUgHAoSi0aS22IRpqcmiUUjhEJBJhMx4tEY8Vic+dk5opEI4VCYeCxGIh5nMp4gHosRCYWZTMSZmowzmYgzPT1JLBomGgmTiEdJxKPEYhESiRjRSIhIeIJEIkYsGiEaCTM9lSASCREOTzCZiDGZiJOIJ0jEE0RCUcITYSYTk0zGE1gtJlxOB9FoCJfTRiwWZmpykqmpKSYnJ1MRj8eJxWLPPCYSCRKJxDPlni+fwG6z4vE4cTrseNwuJhPJPpuemiQeixKNhJicjJOIx4hGkv0cCYeIRsLEY5Hk7xNxJhMxwqGJ5PuJxUnEk8ctGokQjUSYmpwiEYszlZhkenKKaDhMJBwmEY8n39PkJJOJBNFwhFgkeewnE5Mklvs9HCIRjyWPUyzK7MwUkUiISDhEPB4lGgkzMz1NLBIlEg4Ti0SZWurHuelZ4tEYoeAEiViMeCxGPB5dek8hYtEIU0vvMRwKYtBrOXrkQ06cOP66PxYCAj94XlVEnzx5gtfrxWKxrOp4eIC9B/aiMP7pieirTkJ6HW10RK2UNhSzsyQNlUeOzq1hYf/8qp0bDx8+xGg0YjAYOHbs2EvXI4joG86ePXuYmZ5Bo9JiMpjwurxYTFZsFjt+jx+3043H5cVhdeC02/G4nTjsVuw2CwG/F5fTjs1qxuN24vG4cNit+LxurBYTDoeVgN+L2+XA43bi87qx2yx4PE5sVgsulx2/14fdasdhc+JxeXA53NitDgK+IHarA7vVgdvpweN24fU48XpcS6/nwOW043TY8LiT201GPT6fB5vNkmqHxWLEYbfisFtxuRy4XQ68HhdWiwmP24XT7sBsMuJxuzCbjEhGhzEatHjcdtQqGU6HBZ/Ph9frW3r0fmP4fL7nwuPxpMLlcmGz2ZCMjmAxG7FaTGg0SqxWE1aLCYvZiM1qJuD3YrdZcLuS789mNePzurFZzam+dNituJzJ42GzmvG43Lid7lR/Oe0uXA43AV8Ah9WBy+HC6/bhcrhxOz1MBCawmKw47S58Hl9qP5/Hj8Oa7Ce/z43ZZMDvSx43lzPZ106HDa/HubTditPuxOfxY7cl63DYnNgsNrxuLx6Xd+l4+nA5bXg9LlxOO/alY+T1uNBqVMhl4+zfv5cLF8697o+EgMAPnlcVUYATJ06g0+mQy+V88cUXK9CqF/OnKqJvYjiiNspbxKQVbkMXUHP20uKqnReQnBswMjKCUqnkzp07L12PIKJvMHfv3sVqtTI1OcXM1AxGvRG/z49aqcbr9rF3fi9etxe3043NYkMpVxCNhNi7MIvNYkpKn9WM1WJibmaKWCSEyaBnIhhAKZficjpYmJvBtSSLwYAPlVJOLBJm3545DDotfq8Pk96EUW9kZmqG2alZTEYTAX8QpVyJx+Vh78JenHYb9iXhVcikxCJhDuxbwGo2EpoIolEpMRn1zM9OM5WIoVEpCfi8KORSrBYze+Zn8bjsKQFVyqWEgn72Lsxht5hw2K2YjXqGBvro6WpDMjyAxaQnHAoSiUSIRKJEo1EikQjRaJRYLEYsFnvuebLslxEOhwmHw6nnweAEI8NDdHW0MjMVx6jXYjTocDrsKOVSAj4v+/bMYTUbCQb8aNRKrGYT05NxJgJeTAYdPq8Hg06D3+dlYW4Gq9mE0+HAarai1+qZSkyxb88+zEYzkXAUvVaPxWxhfnaeUDCEzWwl4A8uHWcve+b3EPD58XuTMmk2mohHI+yZn8Wo1zIR9KPVqDCbjCzMzRALT2DQafF53aiVCgK+AHvmFnBY7UtSa0etVBOPJdgztwer2UY4FEav1WCzmpmbmSIU9ONy2AlNJM+V7o42LEY9c7Mzqz4wXkDgTWclRPT+/fvIZDIkEsmqLiW398AeQUTfkHBEbZQ2FLOrNJ0x2wgnzp5YtfMCQK1Wo1QqmZ9/tayrIKJvMDdu3EiOzXB7+OTECe7dvcvdO3dIRCLcunGTi+fPc/7sueS4xrNnOLBnD08eP+booQNcu3IZgH3zs5w6eZw7X9zk1ImPuHfvHnfu3CYeDvLFrVt8fvUKF8+f48mTJ1w4d5Z987Pcv3eX40c/5MaN5ILuRw4d4uPjx7l14wYfHz/B/fv3uXP7Nh/u38/Nz29w8fw5Fk+d4tGjR3zy8UmOHNzPvbt3OXJwH9evJu9H+9HhQ3xy8jhf3LzB8aOHuXP7Ng/u32cmHuXz69e4eP4sJ44d5eHDB3z26UVmElHu3b3DmdMnuXolOT72xLHDhAJe2prqUSukfH7t2qr0+8kTx+loaSQeDnLm9CmePH7M+bNniIeDPHr4kPOLn3BjaRmjuekEH584zu1bNzlx7Aj37t7lxufX2Ts3zZ3bX7B46iRnzyS/tZ46eZITx47xxa0vOHroELeXshz79+zh0oXzXL96hZMffcT9+/e5eeMms4kE9+7dY/HUJ1w4fy5Vx/49e3j08AHnTn/MF7duAbAwO8W5s2e4e+c2pz8+zr27d7n9xRfMJGLcunmLi2fPcu3KFZ4+fcriqVMcPnCAhw/us3jqVOpexcc+PMiFc2e5eeM6x48d4dGjR9y4fp0De+awmQw019cwNzPF48fCCg4CAt/GSogoJNeRlkqlaLVaHj58uCJ1fh0hI/rmhHNJRHeWpCFzjnN88aNVOScgeXOF7u5upFIply9ffqW6BBF9w9m7dx96jRqPw8qDBw94/OgRC9OTfPbppwQ8TvbtSX5T+fTiRQ7smeezS5ewmfWcO5u8V/He2WlOHj/KnvlZXDYzjx4+5P69eyQiQW7dvEEo4GNhNjkG6dyZReamE1y5fBmzXsOlSxcB2L8wz4mPjnHkw0P4nA7u37/HgwcP2Dc/y5XPPiMyEWB2KgHAmdOn2Ds3zacXL2LUqjh/dnGpjlk+OvohB/fvxWk1cvfuHZ7ylLmpOJ9eukgk6CMRCwNw7cpl9s5Nc+3qFTwOM6dOJD9shw/uY9/8LFajnunE6i2tdPfOHZTjo+hVMo4eTmYiLp4/y+xkjM8+vYRFr+Hy0uzB/QuznFn8hCMfHiTk9/D06VPu3r7N7GSMq1cu43ZYOfrhQQA+Pn6cI4cOcPbMImadmqtLkr4wO835s2eZn51mwufl6ZMn3Lt7l0QkxI3r1/G5XexdmAPg/Nkz7J2b5czp0xi1Sq5fu7pUxxRnzyyyf+8CQZ879T4SkQmuX7tGOODjo6OHk8fo1Cn2zs5w7uwiNpOeK0sT4T48sJfzZxfZt2cev9vJ48dPuHnjcz46fJATx45gNWq58bmwjqiAwB9jpUT0ypUrSCQS2tvbWVxcncuwQkb0zQlH1IqosYSMkh2ovYpVFVG3283Y2Bgej+eVZ+ULIvqGc/jwYQI+Nz6XmfNnF7l79w6RUIC56QR+l4WAx8ajRw85/cnHBH1uZhJRohM+Duyd58mTJ8zPzjA3NUks5CcS9HDuzCJffPEFHqedA/sWCLjthANe7t29yycff0wkFGD/whyTkSDzMwmePHlMIhYmEZ0gEvQQDXo4u3iKWzdvYjZq2Ts/g92kw2M3cffOHc6cPo3dYmI6HiUS8LB/YXapHdPEwhOE/B5CXicnPjrKgwcPcNjMzM9M4XNYcFmN3P7iFufPnSMSCrJv7wyRgJ1wwMmTJ4+ZnowRC09g1KqIBP2r1uc3b9zAatThdViITfh5+OA+x48dw+d2snduhslwgIP7Fnj8+DHzs9PMTk8SDweZ8Dr49NIFLl++jNNmYd+eecJ+N+GAm0ePHnLowH7cDgszkxGiQTeH9u/hyZMnJGJhZmcm8dhNBD12Pvv0Ijdu3sBltzCdiBD2O4lO+Lh//z7HPzpKPBpiOh5mKjrBsSNJUY5MBFiYncHvthNw27l29Qqff34dr9vBwX0LhHxOAm479+/d5diRw/g8DmYno0xFgxw6sMDDhw+JR0Ls3zNP0Osk7Hfz6cWLfP7550TDQfYtzGHWq1PSKiAg8M2slIhCcg3HkZERnE7nitX5VfYd3IfcIEuKaLNIENEfcDgiVsqaSsko3oHcOc7H506uyjlx7do1Ojs76enpWZEl+wQRfcP55JNPmJuZZN9MmIN7polOeGhvrMBuVLBvNsJcIsCxw/ux6JUM9bYS8TuZT4SZS0Q4fHAfA12tKEYHmYoE2D+bYO/cFNPxCL1tTfgcZhamIswlwnx0+CAmjZKhnnYSE14WJiNMR4Mc+3Afo/3tSAbamQy5mZ8McmjvNNEJL10t1Zg0YxyYizGXmOD4kUM4LQYGu9oIeezMT0aYi4c5tG+Bwa5Wxod6mY4GOTg/xd7ZSSajIbpa6vHZTUxFAixMRvjowwO4bWZ62hrwOXTMTwZIhN0c/XA/CskgPa2NyIcHCa3i+nq3b3/BZCSY6oOPDh9ALhmko7GGkNfBbDxEIuTnyKH99He2Ih/tT/bv3CT75ibxOiz0tjUScFmZn4wwGfLx8fEjGDUyJP3tTIU9LExNsGc6wv6Fafo6G1CO9bEwPcGHeyf56PBeJmMTdLVU43fqmYn5mEsEOX7kAGrZEMM9LUxFfMzFQ8zGw3x4YC/9HS0YlOPMRIPsmYpy5MAeQn433a11uK0aFqYmmE8EOH70AMrxIfo7G0lMuJiN+1mYDrEwk6ClrgLV+BCz8RALkxFOHDnEVCzESG8HRrUMg1rG1Ve8RCMg8KfASoro4uIifX19NDU1ceXKlRWrd5kPj36I3CijbbCFsqZSrCEThqBOENEfQBh8Wgw+LUZ/cga9K2anoDqPbXmbUXsVnP3szIqfDwCxWIz+/n7kcvlLL9n0VVZVRJ8+fcqVK1c5d/4cFy9dFMaOrTD37t1ldnaW2ekYQY8Jj0OLSTuGWTuG16EjGrSTCLmwm5WMDXVgNymJTbhJhD34XWaU40No5MP4HEYmw16iQRc+pwnV+CBG9Tghr42Qz058wo1ZJ0c5PohFJycacBINugi6LajlQyjHenFaVEQCNkI+M06LCoN6FJ1ymKDHRCLsIuSzYTUoUUj6sejlxCbchP0Owj47GvkwyvFBXFYdibCHsN+Bz2FErxrDoB7H5zQR8tmJBJyYdXLGh3swasaZ8FqJBh1MeM04LRpMGikOsxazRknQ41m1fr9y+RJzU2GiASchrw2bUYV8tA+zTk7Y70j1jXJ8EMXYAB67gUTYQzToxGPTo5IOoVWMEAk4ifgdhHw2bEYFSmkfNqOc2ISDyYgbr0OHcrwPg3oEu1FOdMJO2G8l4DEhG+nGpB0j7LcSDdoJekzYjHI08gGcVjVhv51IwEHAZcaklaGRDeOxG5gMewn7HXjsBlTSoWQ/ekzEgg5CPgtGjQS9agSbQcaE10wi7CToMaFXSVBLR/DYjMSCHmITHsJ+J1aDCo/NQNTvxGHWcuXyp6vW7wIC/72wkiL6+PFjdDodAwMDxOPxFasXkpmvprZGesd66BhuE0T0BxYvEtHcimzSirYhtUuQW6QcOrqyE9nu37/PyMgIw8PDHD58eEXqXPWMaFdvN9sztlJWJUpNbhFYGT799BLxRBif18aEz4bNomagtwXJcBdOm5agz0rQZ0WjHKGpvoyxkW78XjOhgB23U8/wQDsdrTWYDXIm/DYCXgtmg5yezgZ6uxpwO/RMBGx4XUa0qlG62uuQj/fjd5sI+q34PCZGBjtoa65Crxkj6LPi95ixW9QM9LXS39uC064jHHQQ9FnRa8fo7qhHPt5P0Gch4LUQ8JgZ6m+js60Wg26cUMBOwGvBadPS09lAf08zNrOKoM/KRMCGxaigu6MOyXAXboeZoM+B12XCalIil/ah10hwWPX4vat3i8/Dh/YzFfcx4bfhcRow6WV0tdchlfQS8FoIBe14XUZGBjtob6nGYlQQ8FoI+qzYLWo622oZ6m/D6zIy4bPic5ue6V+f20Q05MJp19Hf00x7SzVG7XiyD/w27BY1XW219Pc0J+vw2/B7zKhkg3R31KOUDRJZ6nOf24RkuJOWxgrMBjmRCWfqGPV01jM80I7baWDCb2PCb0OrGqWjtQaVfIiA10I46MTrNCAZ7qK7vQmjVkko4CYc9BDwOjDqlOjUcvweOxN+d2pMqoCAwDezkiIKcPDgQbq7u+nt7V3RpZyOn/iI37/3O1p6m+kcaRdE9AcWLxLRvMoctuVtZtwmoVnSiNQwvqIrmRw6dIiWlhaGh4df6r7yL2LVRbSzqx1ReRGS8UFu3VqZRgskuXLlMqGIH7fLTMBjwaiTUl9TSltzFTazCr/HjN9jRirpRVScRV93E26HnqDPisuuo7OtlgpxHhrlSEoidWoJNZVF1FYVpwTQ4zQgG+ujuqKQwb5W3A49fo8Zj9NAd0c9FeI85NIBfG4TPrcJs0FOfU0ptVXFWE1KJvw2fG4T8vF+KsvyU+1YrqO9pZqy0pyk5HrMqTqqyguoqy7BYlTg91rwe8xoVaPUVhXT09mIy2Em4HPgcZkwGaRIx7pRK4Zx2gxMxqOr1u8H9s0TDblSfSMf76e6opC+7iZcdh1+jxmXXUdvVyNV5QVolCN4XUb8HjMmvYzqikLaW6pxWDUEvBZ8bhOjw12UleakBDXgteCwamisE1MuykWnlhD0WQl4Leg1Y1SI82isE+OwalJ9NjzYgbgkm+GBdgJeCxMBOy6HnrbmKooLdqFWDKfqsBgV1FYV09pUicOqSW0fG+mmrDSHwb5WvC4joYAdl11Hd0cDlWXFqOQSgj4nAa8Dl92ERjmOUjaKy25iMhbiC+EzvmI8fPSIO3fucPfuXR4+esTDhw958OABDx8+/DIePeTunTvcu3cPgC+++IIrVy5z48bnqbh69SqPHr2+q1H37t3j4sWLXLx0aVXXu3yTWGkRvXv3LqOjozQ3N69Ylgrg41MneXfDO7QNtNIhiOgPLr4uos6YjfyqXNIKtyGxjFDdW4nSJF+xW3w+fvyY4eFhurq6iEQiK1InrMGl+WDQh89vw2BUCRnRFeazzz4lMOHB77Mz4bdh0ssoF+VSV12C3aJOZRdlY33kZm2nq70Oj9NAKJDM2LU2VZKfk4ZKPpTKiBm044iKsygt2o3NrCIUsOP3mJGP91OUv5OezgY8TkNKXDpaayjITUc21peUH78Nq0mJuCSbksJMrCYl4aADv8eMbKyPvOwddLTW4FnKwvncJpobysnatQWppDeVxbUYFRTl70RUnIXVpMTnNuF1GVHJhyjK30lLYyUuu4mA147HacSgHUMy0oFCOoDZoErNsF8NDuxfIBZ2p/pmfLQHUXEWXe11uB16Al4LLruOrvY6ivJ3prKLy8eopDCTxjoxLrsu1e8jgx1kZ26lr7spVdbjNFBVXkBe9g4M2nHCQQcTfht6zRj5OWlUlRekJDLoszLU30ZmxiYG+1rxuU3JzLdDT2OdmNys7WhVo0z4bYSDjtQxqq0qxmnTEg46CAXsSIa7yM3aTk9nAwGvhciEE6/LSFtzNYV5u1HKRgkHPUz4XXicFnRqGbKxIWxmHbGI/3t/2bxw4Tx6ow6dXpt61H4tvss2nV6LXq9Dq9NgMBmQysZRqZWotWqUKgUqtXIpVCjVSlQaJWqN6muhRq1RoUo9T8ZXf1Yt/f65bVo1Sq0KpVaFSqtCqVWi1CpRpX5WpZ5/NZRaJSqdGoVGiUKtQK1XMzw2gkKtZHB0iKa2Zlo72+gb6qd3wdJh8QAAIABJREFUoJeuvm66+3vo6e+lu6+b7r5uevu76e7tZGhkgLqGGppbG2hsqqOuvprmlgZq6irp7etCp1ej1ihRaxSoNIqvPCqfCZVagVIlR6mSo1LLUapkqJbKfjU0WhV6oxa94cvQ6jUYTXp0eg06vYarV65w+vRpNmzexOatWzCZTa/8+Tt9+jSnT59+5XpeJystogDhcJjBwUHkcvmKLeV04uQJfvv2b2jrb6VzpIOypclKgoj+MGJZRA0+bTIjGreTV5HN9vwtjNskVHaXIdWNrVhG9MSJE9TV1dHb28vFixdXpE5Yg4xof28Xbc21DA/18Pl1YWmXleTTzy4xEfLh89oI+qwpEa2uKMRiVKQut0slvWTsWE9Ha00q2+Z26GmqLyM7cysK6UAqe7osSoV5Gc9k7GRjfWTt2kJnWy0+tymVQW1vqSYzYxPjoz2pS8fLEllcsAurSZkSNtlYH5kZm2hrrsLrMqYyio11YnZsfR+ppJdQwE7QZ8VskFOQm05hXgZWk5LAUkZUrRgmN2s7TfVlOG3GlIjq1KMMDbQgG+vDpFcQDQdXrd8PHdhDbCkj6nObGB/tobhgF+0t1c9kM9uaq8jZvQ2lbDAlnHrNGLlZ26mpLMJl1xEK2AkF7Az1t7EzbQM9nQ343CYm/MkhEZVl+WRmbEKrGiUUSH7hMOqkZO3agrgk+5ls5mBfK2nbPmCgtwWf20Q46MBl19FYJ07VMeG3EQrYMellFBfsekZmJ/w2JMNdZGZsoqu9LiXEboee1qYq8nN2oZJLiEx4CQXceF1WVHIJkuE+7BY9Hpf1e1+an56dpr65DnGFiLIqMRXVZVTVVlJZW/G9oqq2ksqaCsQVIkQVpWRm70JUUYq4UoS44mtRmXytVFQmQ1wpeukQVYq/NUq/5Xfi6nJKK0SUVIgorRTzz7/5b2QX5FBeU0FJeSniqjLEVWWUlL/4dSqqxFTXVpCZlcGO9K1UVpchLi+hqib5WFElprxSRHlFKWXfIcorRZRXiqj4SpRXil5YrqJK/EyUV4qoqimnqqaMqpoKPj51kqtXr5JfUEBOTg46ne6VP3+VlZVUVla+cj2vk9UQ0UuXLtHX10d1dTUzMzMrUufJj0/y+/d+R2tfC12jnZS3iDEHDRgn9BgDr1/EhEjKqN6rwRTQ4044yKvMYXv+FsasI1R2lzO+QiL6+PFjRkdH6enpwWQyrViWFdYgI5qIhfC5rMgkw1wTxo+tKJcuXWQinBRRr8uIXjOGuCSbCnEeRp2UgNeC12VEMtzFts3v0tpUicuuw+sy4rBqqKsuIX37OqSSXjxOAx6nAaNOSkFuOnnZO7CalHhdRtwOPWMj3aRt+4C25ircDj1elxGP00BzQznbNr/L6FAnPrcJv8eMUSclPyeN/Jw0zAY5fo8Zr8vI2Eg3O7a+T0tjRaoOl11HQ62ILRvfTmVEfW4TRp2UvOwd5OzehkkvS44n9VrQqkbJ2b2VxjoxTpsRv8eK22FApx6lv68RqaQHq0mzqiK6f+884aWs8nLf5Oek0dpUiduhx+dOjlltrBOTsWM9srG+1LAFrWqUnWkbKCvNwW5Rp97XQG8LO7a+T2dbbWrYgsuuo0KcR9q2D1DKBvF7zAS8ySEYu9I3UlKYmRy2sNS/A70tbN30Tkpmw0FH6jjv2Pp+qg6/x4xeM0Ze9g7EJdmp4+z3mJEMd5G+fV1Kqpfb0VArJmtXGgrpSOrSvNthRioZZHigG4dVj8Ni+F7LNz158gSZRkZpVQmFZQXkluSQL8pLRmnel89FeRSI8ikQ5ZMvziNfnPw5v/Rr5UrzKBDnk5m/i/TsNArFBeSV5FJYVkBBWT4FZfkUlhVQKC6gQJysr0CcT6G4IFlGnP/l9uXflRWk9lkutxzJckuvLS4gX1RIvqiQvKXIFxVSIC76o5EvKqSgLPmYW5LPL375X0jLyqC0SkxRRQmFZcUUlBVTWF5MUXnJc5FfnEtZZSkbNq9j/aYPKKsUUViST4m4kNKyYgqK8ygWFVAsKlx6/PYoKi2g+GtRVPqisoWUfD3ERRSW5FEiLqS8SsQnp0+xuLhIVuZu6qprmAgEXvnz99Of/pSf/vSnr1zP62Q1RPTp06dYrVY6OzsZHh5ekToFEf3hxx8XUcmKiOj58+cRiUS0trZy5MiRFTi7vmTVM6LdHW3803/+BVs2bOD6Kt3p5k+V8xfO4fE68LituB16dOpRigt2UVaak5og43EaGBnsSImo06bF4zTgsGqorihk0/o/MDbSjcdpSAng7p2byc7citkgTwmnZLiLrZveobmhHIdVg9uhx+3QU1ddwsZ1v0+J6HIdWbu2sCt9I2aDPCWdI4MdbNn4No114mdkdrmO8dGe1CV4k15GZsYmdqVvxKAdx+sy4nObUCuG2b1zE7VVJbjsJrwuMw6rFp1mlN7ueiTDXZgNKsITr/4P75vYuzCbGlbgduiRDHeRtWsLbc1VOG1a/B4zNrOKhloR27e8h1TSm3q/OrWE7VveSw19WJa9wb5Wtmx8O5W19rlNuOw6xCXZbNv87jMiatCOk759HUX5O58R/f6eZta//9tUHX6PGYdVQ1V5AVs3vYN8vD/V58vHeXn4xPKxGx3qZMvGt2luKE9OVlvKzNZUFrMzbQvy8WF8bhtelxWH1cD46ADDA91YjBocVgOXP/vus+avXL1CfnkeeeW5pOelsatwJ5mFu8jIT2dnfgY7CzLYmZ9BRn56MvLSU8935mewq2BnMgqTkZ6Xxs6CDNJyd7B19xZ2Fe4kq2Q3u4szv4yipSjOJKtkN9klWWSXZpEjyiarZPdzkVOaTU5pskx2aRY5pVmp3y3vlyPKIUeUS7YolxxRXjLEeeSXF1JYVUxBRRH55YXklRU8E/nlheRXJLfniPNS2//jP/+/bMncRn55Ibll+amyBRVFX9ZVvlxHUpBLyovZuG0D67eso6S8mCJx4WuNkvJiahqrOX3mNOfOnWPTB+v4/a9+jUaleqXP3szMDD/60Y/40Y9+tGJZv9fBaogoJO/93dzcTHV1NYuLiywuLr7ShBJBRH/4sdoiuri4yOXLl7Hb7bS3tzMyMrLid/FadREtLCjkr3/+N7z79vtcvSqI6Epy/sI5PD4HHndyTKJGOUJhXgbikmzMBnlKZob621JysSyRdouaqvKClIi6HXo8TgN6zRiZGZvI2rUFk16Gx2nA7dAzOtTJ5g1v0dxQjt2ixmXX4bRpqa0qZuO63zMy2PFMHbt3bmZn2gaMOikuuw6P08DwQDubN7xFQ60otc1p01JTWcT693+LZLgr9XrLWb+daRvQa8ZS4quQDrArfSM1lcXJy8FOEzazGo1ymO7OWkaHOjDplasuokFfcniD06ZlZLCD3Ts309pUic2swuM0YDUpqa8pZdvmdxkf7Um9X61qlO1b3ksJ4HIGdaC3hc0b3qK9pRqP04DXZcRp0yIqzmLrpndQfGUymE4tYcfW9ynMy8Ckl6WEuK+7iXXv/SZVh89twm5RU1mWz5aNbz8jonrNGDvTNlBcsCslxF6XkcG+Vjat/0NKRH1uE06bluqKQjJ2bEY2NoTXZcXjtGC36Bkb6Wd4oBuzQY3FqOGzzy59Y7/duHmdY6cOc3zxKB8tHmX+wzkGFP30y3vpk/UwoOhjUJn8+bvEgKLvhTGo6KeipYzusU4GFP20DjTTOvhstAw00TLQRHN/I019DTT1NVDbWf1cVLSUU9Fc9kyUN4sRN5YibiiltL6Y4toiCioKyBXnkV2aw+7iLHYW7GJ3URbZpTmpyBHlJoX1az8v75dfXkBBeSH//Idfsj17BwUVheSV5Se3VxSmfs4ryydXlLe0fx6FZYWUVJawccdGNmzbQGlVKYVlha8tSipLKCoroqy2jNNnTnNm8Qy5OzPprG9iOpF4pc9eenp6SkTT09Nfqa7XyWqJKIBUKqWjo4OhoSGKi4vRarUvXZcgoj/8+DYRreopR2YY58nTlxPRe/fuUVZWllqntqWlhUOHVnY5KFgDES0qLOXv/t1/4O231nH9mjBGdCVJiqgTtyu53JFGOUJBbjqi4iyMOmlKZgb7Wtm84S2a6stSEmkzq6gsy2fT+j+kMnYuuw6tapRd6RvZvXMzRp00tX1ksION635PU30ZDqsGl12H3aJOZTOHB9px2XW47Dp0agmZGZtSIuq0aXE7kstFbVr/B+prSlPbljOzH7z7a0YGO1KCa9COsyt9YyojutyO5fGuNZVF2Mw6XHYDVpMKlWKQzvZqhgfaMWjlhIKrt6D93oVZAl4zTpsWm1nF8EA7u3dupqWxAqtJidOmxWyQU1ddwtZN7zA20o3LrsPt0KNRjqRE1GJUpAS1v6eZTev/QHtLdUroHVYNouKslEQuC6pWNcqOre+nMqLLQt/b1ci6936TmgzmdRlTx3nzhrdSS0N5nAZ0agkZO9ZTlL8Tu0Wd2j7Q28LGdb+ntakyNVzDblFRXVFExo7NSCWDeJwW3A4zNrOO0aFeBno7MOlV6DVyPr30zQPYL125wOyHCSJ7A4T3BgjO+fAknDijNoKzPtwJB+6EE++k65nwTbnxT3ueCd+U+4XlvJMuAjNeusc7MAcMBGa8z5XzTrrwJJy44w5cMTvOqA1HxIozansubGELtpD5mbCGzFiCRkx+PXqPBp1bjcKqQKqXMaKW0C8bpFvSS/tQJ839rTT2NFPbWU91ey0VzVWIG8oprRdTVFNCQWURBVVF5JTlsbs0m13Fu/lPv/oFW7K2kSPOI6s0m6zSHLJEOcmMa1keOWV5yYxoRVJQC8sKKSovYv3WdXyw+X0KxAUUil+fiOaL8iksK6SqsYrFs4ucWVzkP/7dv+ef/sN/wqI3vPTn7t69e/z4xz9OieiPf/zj1GoBbxqrIaJPnjxhYWGB7u5umpqaqKurIysri4KCgpdeNeHExyf49Vu/prm3iS5JO+UtIswTBgxBPfqgDsPSHZYM/qXnX/35RduWf/62/b6tzA9pv2+r69vKrNR+geTPer8GnV+DMaDDlbBTUJXH1tzNjFtGqeurRqIc5WWHcx44cIB33nmHqqoqioqKaG5uRqfTrfhkwVUX0ZraVv7hH/+JTZt3c/36jZWu/k+aixcv4PW7UpfmtaoRCvMzEJcmM6Jed3IM5mBfK5s2/IGmhrKkADr12K3JjOjmDW+hkA6kxmsuS2RW5hZMBtkzl+Y3rvs9LY0VKXlyWDU01IrYvOEtRoc68TgNuOw69Nqx1KV5k0GWuiw9PNjB5g1vpS7NLwtUdUUh6977DaNDnckso12LQTdOZsYmdu/cnBoi4LRrUyKaXBlAj9thxGZWo1YO0dlew2BfK3qNbHVFdM8sQZ8Vp02DzaxKzXhvbarEYlTgtGmxGBWpjOiy6C8LYPr2dUurAShS2wd6W9i88a3UZfXlY7ecEV2+NL88zjRt+wcUFyazmcuZ777uJta//1u6O+pT43UdVg2V5c9nRA3aZP8uZ0SXs63DA+1s2vAHOlprUstr2cwqaquKydix+blL8yODPfT3tGPQKlDJx7h08cI39tuFz84TmHLhiFmwTOiwhIzYYxasETPmkBFb1IItasEes2CPWb+MaLKMLWJ+7jEVUQv2qAVH3IYrYadpsB6dV40jbnu23FJZZ9yGM2FLPn79+dfC8bVIlU98uZ8n4cab8OGJe58Ld8yDM+LCEXZim7Bj9lsxek3o3QY0Di0ahxapUcaIZpQ+WT+/Xf87qtqq6RztoqGnkYqWSoprS8ivLCC3PI+cslx2l2axqziTnUWZZBXnkFuax7pt61m3bT1FFcUUlBdRUFb4ZZQvRdl3iPKvxYu2fUtduUtjZsvqyjl99jSLp0/zN//q3/B//2//O7Lh0Zf+3Fmt1pSELofVan3p+l4nqyGiDx48YGBggMLCQqqqqhCJROzevZt33nnnpRe6v337Nq1dbfRL++gYaaa8tRhLyIDer0cX1KILqoX4ocSEGmvUQn5FHjuL0lHYpJhcRo599PL3m6+srGTLli3s3r2b2tpaysrKqKioIBQKvXSdL2LVRbS4sIj/5x/+PRvXbRAyoivMmbNn8HiceFw2vE4DBs0YpYW7KRflYlkaO+i26xkZ6GD75vdoaajAbdfhd5tx23XUV5eybdO7qOXDeJ1G3HY9ek1SInMyt2EzJS8zexwGxkd62LrhbVoaK/A6l8Yw2rSpyUpjw914nQZ8TiMmnYysnVvI2rkFs06Gx2HA5zIhGepi26Z3aaorS5Z1Jeuory7lg3d/naxjaQKQWS8na9cWsndtxWJQ4HUYcFq1yMf6yUzfRH1NKTaLDpfThMWsRqcdo6uznv6+VtQqCRMB76r1+749s8mZ8WY1drOKkYEOcrO209pUid2sxrUkos0N5aRtfR+ZpA+Pw4DXacSoHSczfRNlJdk4zGpctmSmdKivja0b36aztQaPw0DAY8Fl01EhymX7lvdQLy0B5fckx4hmbF+HqGg3DosGn8uEx6FnoCd5eb+7ox6fy5TsX6uW2spitm9+D8X4wNL25Bjc3MxtiIuzsJvVBDxmAh4zkqEu0rZ+QFdbHUGvFbddj92soqFWTGbG1pSI+txW7BY9Q/1d9HQ2Y9IrUchGufgtInrp8kU8MQeuuA3jhAZT2IDOr8Uz48I95cQWs+Cf8+KctONI2PDNefDMuHBNOgju8eOacuCeduKf8+BM2LHHrXhn3FjCyXUNLRFTUmZjFpqGG9B61dii5ufCGjVjDhuxRExYo+bUPtYlwX02TM/FcvmvPjqiNpwRO47lCC9FxI4z6sAVc+KOOXHHXF95TIYn7sYVc+Kf8uGb9LI1ewvjxjH80z6cEQe2kBWD14DWpUFuljFmkDCoGqBH2k3naBctg2209LeyIzeN9ekbKKopIUecS7Yoh2zRUja1NIdccT65ZQXklReS/8x408LkeNXnoigptEuRV1ZInriAPHFBqszX903VKS6gor6KM+fOcurUJ/z8X/9f/Nv/8x+QSmQv/bn7zW9+85yI/uY3v3np+l4nqyWiKpWKsrIyioqKqKqqIjs7m3fffReRSPTS9R49fhSlWU7bUOOXIhoQRPSHGLa4hfzyPLZmb0Zpk3Hh02/+e/zHOH/+PL/4xS9IS0ujoKCAxsZGdu/eTWVlJQcPHnzpel/EqouodKCBbb/9O2oKNvHFLSEjupJcuXoFg8GAyaDFoBpHOtxDbVkR5UU5yEb6sBvVGNVS+jubydiyjobKUoyqcSw6BUaVlKrSArZvfI+BzmYsOgVWvRL1+BD5u9PI3bkdjXQYo2ocg2qcvvZGMraup7a8GJNGhlkjw6Aap0pUwI5N79Pf0YRBOYZFq0A9PkxW2mayM7YiH+nDpldhUkvpbWsgbdMHVIsKk2V1CgzKMWrEhaRtep/+zmYsWjlmrRz5SB+5O7eRnbEV6VAvJrUMo1qKpL+TnIxtlJfkoVKPodXJkCtG6B/ooKW1jsGhLtTqMYITq3eLz6MfHsKskWFa6oP+zmaKc3dRW16MTiHBolWgk49SWZpP5o5NDHa3opOPYtbIUEgGyNyxieLcXegUEkwaGXaDip7Werase5ummjIsWgUWrRydQkJZUQ4Zm9cx1NOGVafAplehlAywa/tGRAVZ6OSjyeOhldPeWM32De/SVl+J3ahO9q9qnMrSfHZuXY90qAeTOnnsNLIRcnduR5S/G/X4EGatHLtBRX9HExlb19NQJcKytM2kllJdVkh25naGBzox6RWY9Ap06nG6Oxrp7WrGpJejUX57RvTipxfxJdxYI0ZMER3msAFPwknTQD3lLaU4IlaqOsoZ0vTTOdbGpqz1FNXlU9JQyLa8zVS0iWkaqGdLzkaaBxvolnZQ2liEOWjAEbFiC5uxhc04YzZah5vQulU4YzbsEcsahfWV9nEnHNgjVjZnb0BiGME75cYesWALJ3/nmXLhitvxTDrxTrnwTbvxTrlxxe2E5gM09v3/7J13fJTXlfeJk93NZrPv5t13N8km2cRObINb3Hu3wRTTJFElBEiAujR9RqMZ9QoCBOoSqLfpVQVJSBo1cInjggHbFFea6F0U6fv+MZrxqNlgg9N8Pp/f57nPfc49zy2P4Dfn3ntuCvHr1OibtZTqN1FYk8+GknWk5SaTsD6O6GQlkngFIrUUQYyYyGghUUoRQpUEoUqCSC1BFCtFGitHro52Q6FWIldHI42RI1HKkChlSGPkiFUSRLESRHESpPEKFPEKouOikcUoiI6NIT4pkU8/+5RPP/2Cu+57gQcfm0lFtfEb/92lp6e7Qze5kJ6e/o3t/SXlZu2ab2hoQCgUEhgYSGpqKhKJhOXLl7Nw4UI++eST67bZ399PeXUFRVWFrCvKGEZEtS11aFtqv8dfC1prMXcYUaepCJOFUG4qZeeH33x3e0lJCYsWLSIsLIzY2FiUSiW+vr6kpKTwxRdffGO7Y8lNJ6JrEkUEzX8aySofjh/tu9Hm/+HF4XCgraumsqSInPWrSUuMJVocRW5WJrXlm6ncXMjqlHiiQlehlAgozttI5eZCNuVvRCUTEbZyOXFKGRWbC6gasiEIC0IUEUzW6lRqyjdTvqmA5FglYSuXEy0RUFaUh7a6nM0F2ShEkYSuWEZKvIrKkkIqS4rYmJmOODKUsFUBbFybQV1lqdNGnJJVy5cgFYSxuSCHuooSSgpzEIUHExmykkR1NOXF+dSUb2ZdejJRoasQRYSwfnUqVaVFlBTmkhKvQhQejFwcRU7OOkrKCtlckk98QgypafEUFuVQWlZITW3lTevzgwcPULGpkOqyTRTlbmBdRjIJMXLilFIKc7KoLitmU95GZMJwIoJXkJqgpmJTAZqqMtZnpBAeFEBEUCAbM9OprSihcnMhcdFSVi7zI0YmonJzIWXF+ZQV5yMVhBO6cjkp8So0VWXoasrZkJlGZPAKhOHBFOVkoa+poLpsE6nxKsJWLUctF1NZUoimspTCnCwkUWFEhawkMy2J6rJNVJcWk7NuNaLwYMSRoWxcm462qoya8s0kxyoJXbEMtUJCYU4WRk015ZvykYsiEUQEk5mRRFV5MZVlxeTnrCcpXsmmwhxqq0rJzV7Hx/v3jd9vLiLq0KPv0GDu0LP19WZSshO57f7fsrFsPS/OeY7MogwSs+KY7P0ismQxgcJl/PquXyJNEiGKj+KVeS+TvDGB/Ooc7nr8TjbritiyrQFzmwFrh+kvSES/HZxE1ESAYCmbtIU0b2+kvsuKuc1AQ7fNnbZ3WqjvsrrbZmzV0by9kTWF6awpTKf19S1s2dbAlm1O4mpzOEm6eatzSUCFsYK8inzWF2eRmp1GwtpE1BmxKJIViOOlzk1QCiFChRCRQoQ4WoxQ7kxLVVJkahlipXODlVAlRKgWI1KJEakkSNROoiqLkaOKU/PZ55/zwQcfMnHSXTz88GMUF2++aX+Xf0tyszYrHT58GKlUire3NyqVCrVaTWpqKhEREdTW1l63vf7+fjQGLZtri8cgopohMvo9/lpg6TCRmpVClDKC2oZqdn70zU7ZunTpEjKZjOTkZBITE0lKSmLVqlUEBARQWXnj/2+96US0rqKYRbOfI1Ep+v6Iz5sgnZ2dFBXkkbN+DUW5G1mbnoxaISEtMZac9WvIXrea5LgYElUKFOIo0pPihvLXkKBSoJKLUcnFZCTHk7N+DZlpSQjDg5EKwklUR5O1Jo3sdatJVCuRiyLdNrLXrWbjutXEyERESwRESwSsX53KxrUZZCQnII4MRSGOQiUXk7UmjQ2Z6cQpZciEEURLBGQkx5OblcnGdauJj1EgE0YQp5SxLiOFDZnpJMerEIYHIxNGkKiOJm/DWjauzSA5LgapIJxYpYzEBBUZa5LJ2pBJQqKapORYsjasIS9/AxbrN/e8fJ2cO3eWksI8crMyyVm/hrUZKaTEq1BKhaQnxbE2PZmsNc72uvonMzWR7HWrSU2IRRIVhlwUSaI6mvyN68hak45KLiZGJkIpFZKaoKYgez352euJHbIRGy0le91qcrPWkpKgRioIJ1oiICVeRUH2egpzskhQKYiWCNz1yN+4jux1q5GLolArJKjk4iEbmaxOSUAuikQlF5OeFEdhTtbQOEcTIxMSr5SRnhRHblYm2evWoJQKiVPLSU2KZcO6DPKy17F2dSpqpZTsDZkU5W8kTiVn967xf4EfPHyAZhcRbddg7TRR32llUdB8ZvpOZ7OuiKenP8FmXRHSJBELV83D0m4kp2IDU3xewtxmIFwZQqBwGaategKFy5jpOx3dljoae+xD3sO/pEf0xhHREn2x+97eaUHTWIO900JDt42W15qcG7082tz6+hYy8lNJzUmiqbd+mF2bw+ws22WjqbueLd0NNPc20rytiabuemztFkwteurqa6i2VFKqLaGwMp8NRVmkrk8mNk2FLE6KUClAEB1JlCISgSISQYwAYawIUawYSZwUSbwMWZwCcbQEVYKa+OQEPvn0U774/FNeePpefF59Cqvp+snQ36PczF3zzc3NBAYGsnjxYpKTk5FKpcybN4/ExMRvtGlp14e7qTJWkFmQRmymAuNWLdoWnZOINo9BiFx5zbXUNdWgbalD1+okrZrmWve9c7PNSNSNgfF0rwXfwl7rGBhDbzxSeK162uahfmn+sl9G9qWuRYO2uRZdSx36rVo0W2rHtGXtMKFIVBAqC6baWsH+z8d3DHyV7Nu3Dy8vL5YsWeJeFzp37lxEIhGff/75N7L5VXLTiejZs2dIT43jrbfevNGmvxegra2N4sI8ivI28vpr2ygrLiAjOZ6kWCXVpcVUlm6iubGe5HgVCSoFa9KSqK0oodvRjqa2ivSkeOKUMvI2rKU4L5tt3V1sXLeGBFU0CSoFpUV51FWVs723m6S4GOKUctKT4qgqLaalqQFtTRVc8ApIAAAgAElEQVQpcTHEyERsXJtBaXEe23t7yN24jsRYJSq5hJKCHMo2FdBgt5KojiZOKWd1aiJVpcU01dsw6bUkxSpRKyRkr1tNSWEuNouJnPWZJMfFoFJIKMjOoqailLfeeJ2UBDXpyfEkJcVSvDmfxiY7FouRxCQ1KanxVFWXsmPH2zetz/v7L6KtqaBicwE1FaW8tq2HNWlJJMUqyUhOoLpsE90dbRg0daQkqFHJxWxcm0FJUR5djjbWrU4lJV5NaoKask0FVJeXYLeaSFQrUUdLWZuRQnXZJhxtrdRUlpGWGEt8jJyi3A0U5W6gY2sLmekppCXGkRSrpHxTAfUWI63NTcQpZcSrFKxfnUZVaTGOtlaqyktIiVeRqFaSk5VJUe5G3v3zW2xYt5r0pDhSE2Mp31yAQVNDS1MDSbFKkmJjWJeRQk35Zjrbt6LX1JKRksDqtEQK8zZQXb6Jro52stZmsD4zjZysTPJzsti3b++4/eZJRA0dGswdBmwdZp6f9QxLI/woNWziqWmPU2rYhDhBwArRcmrrqwiRr2LGoqnottQRERNKqCKIalsF0xZMYZbfDLa+0Yyl3YixVfd34xEtNWyivstKfZcVY6sOWbKYKHU4YdHBCOMiSVgfyyZtobu9ra9vIT0vhdScJLZsa8DmMLvhJugOM3aHCbvDhM1hxNZhxN5ppr7LQmO3lcYeK009Nlp6G2jpbaCx04p1qxFTiw5dQy2VxlIKKrNZW5BB2sYk1BlKBOooBGoBUSrnWtSoaAECuQCJUkpsUhyHDh/mk4/38eRDv2feq49jNXy7OKJ/L3IziWh/fz/5+flMnToVlUpFQkICc+bMYdasWezateu6bJ0+fZq0zAzyy3NZV5RB3Npo9C11aFt0GFv1GFq07hBCrjPPXaGEDC1aNI01aJtq3c9cR1EaWrRom2qHwfOZCy57I/XGCmNkbNWNwkh7hhbtsGMxXRj5Dm1T7VeGS7oWjFXvkXDZdPWZuc2Aaat+VDtMW/XottRh2qpH36xB01jjbp+rvLFVR2OXndh0NaGyYGrtVbz3wTcLtbR582YmT57MypUrycjIIDg4GC8vL15//fVvZO/r5KYT0QsXzpOZtY4/v3PziME/srz99tvs3r2Tg59/xulTJ6muKCNGISEvewNnTp3kyKEDHDp0ELVSgUIipMvRxplTJzhxrI9tPd2EBa0gRiHjk/17OdZ3mAvnz1NdWY4wIpTc7CxOnzxO3+GDHO07Qky0DJkoCrvFxOmTxzl65BDvvP1nQlcFopCI+GDX+5w5eYJzZ89QUVaCRBBBTtY6+g4dpO/QAfqOHEEVLSNaIqKttZkTx/o4efwor23fRsjKQMSCCHbv3MGxI4c4ffIEddVVCMJDyFq7hmN9hzn4xWecOnmCtWsykEmE6PQaTp46zrHjfXzwwS5E4kji4mOoravEbrfetD4/c/o0Jp2G3e+/x9HDhzh+7BjJCbHIxFE0N9Zz7swpzpw+yfs73iMyNAi5RMieD3fTd+gAx4/2sWH9WqLCQ6ipLOfk8aMcO3KYLz7/DGFkGDJRFG+98Rqnjh/j5Inj1NutRIQGoYqW8dnH+zl88AsuXjhHbvYGBOEhVJWXcubkCY73HWHf3j1EhAYjFUby5zff4MzJE5w/e4benm5EkWHExij44tNPOHzwCy6cO0tRfh6iqDDKNhdxvO8wRw8f4sAXnxMtk6CUidnW3cWZUyc4feokPV2dCCNCSUmI5ZN9ezhx7AgXL5yjprKcWKWcorxsSosL+ejD8XdoHjx8kObuBkwdOvTtdVgcRlpeayIjP5WImFDWbVqDNElEmXEzyyKXMH+FN5u0hSRvTCAlO5EaeyVLI/xYHLyACnMpxZoClkf5o2/WYO+0YG4zfGceUU+SdzM9ovVdVvTNGjfJlKdIiIgJRRQfRXZ5FvZOCzaHmebtjaTlJpOWm0zz9kbsnRY3XHW1dxmxdRmwdhqwOvRYHDrMHVrMHVqsDj3WTj32LiP2DgO2dgP1HUYaHGYaOs00dVlo7rGxpdtGQ6cZW7sBY7OGGnsVJYZScipyyCxcS3rOatRpccjj5KiT49j5wW527drJww/ewwvPPEJ1ZclN+7v8W5KbSUQBzp49y+LFi1m+fDmZmZksW7aMZ599ltLS0uuys2PHDv7jv35G/OpY8iqyUGXIMLQ6PaIuUqdprEG35Uvyqd1Si26Lk3gZW3XoWzTomuswtmrdJGs88qfbMhzaLWPp1I1JOnXNdaOxZbTNscjp2HUZgzi2aMYktpqmmmEYy562qXZMPVe/OEnlEDn1iNHq2c+GVi2axuphsUPd5Li5Dlu7mdh0NRGKMHRNdfS8fv1xe8+ePUtgYCBPPvkkKpWKpKQkXnnllRt2WtdYctOJaH9/P6lrM3n7vR032vT3ArS3t/Puu+/gChP21p/epKVlCy3NW7h69SoAJ0+cwGQ0YDTqeetPf3KX3fHeu9TVVlNdVcmxoeNXr14dwOFox2jQYbWYGBiycebMGXQ6DTXVlcNONNm58300dTVUVVVwaCiG5MDAAG1bW9Fp66i3W7k64LRx/NgxTEY9Wk0tf/rTlx7yd999h8qKMiory92LoAcGBmhv20pVZTkmo54LFy4AcPHiBSxmE01NDbz55htuGx9/vB+r1UJPTzd2u5Wysuv7B/d6pK+vjw0b1vP5558Czj/cra3NmE1G3nzjyzq9//4ODHotVVUV7t3kFy5coKHejk5bR9vWL48h/eyzz6iqrKC2pprdu7/0Wmzb1ou2rhatppYzZ844++bqVRoa7NTVVrPVI3D/F198TmVlGXW1NXywe7c7/7333kGnraOmupJjR486bQwMsKWpEYNeR5uHjb6+I9TV1WA2Gdi188v1RTveexeTTkdLU6P7pJYL58/T1dFOV3s7nW1byc/eyIdfESrkwKEDNPc0Yu8xo2+vw9yhxzq0EcdFGBt77G4C5ro29dbT2GN357nyXXAROUu70U0Svysi6iJ6N8KWi4guj/Jns67IPfWuaawhPS+FtNxkotNkiBMEyFMkZJdnucu2vr6F1Jwk0vNS3B5RTzJq77Rg6dRj7tQOg6VLNwq2Tj12h2EU6juN1HcaaegyOdFjo3FbPQ3bGmnsaaCxp5HGni2YWixo7TqKqzcTKgojMHQVy4KCWbIykMra7z2icPOJKEBdXR2zZs0iMTGRuLg4Hn30UQICAjhx4tqj13y0Zw///etfIE+Qsakuj/h1SqwOI+YOC8atBkytBqztZmztZixtJqztZkyteuo7rdg6LFjajNgdVqztzmeu+LzWIf2RsI7AmDrtJmxD7xyGDssojLQ3ns1vC2f7vsT16LmuplYDljYTdocVe4cztrF1qF2ufrN1mLG2mdx5ljYj1jYTDV02bB1mWrZtIWV9MgJVJHUNNXS/dv1hu1paWnj66aeZOXMmqampREVF4ePj8402u12rfCUR/SbBgs+cOcORI0foO9LHkSN97Pv4Y5TJibQ6HPQdPUpf31GOHnXi2PFjzryjfUPXr0LfdeiNpT9Oft9YOmOV+fJ6pK+Po8eG7vucONI3Rv2G8q8bR13pIxw/ftxNKMeStrY23n77bffanytXrnDlyhWuXr3KwMAAg4ODXL16lcuXL3P16hX30VwDAwNcvnyZK1eu0N/f736Hq/zg4CD9Fy8yMDDgxtWrV7l0qd/9fGBgwFn2yhUuXrjA1atXh953xW3bVa/Lly9z6VK/uy6X+vvd9bh48aJT16N+rrKXL1+m/+LFYbYvXbrktu9qX39/PwMDA1y5cgWz2URJyc3bFHHo0CHWZq52T0M7+/YqV69edbd3cHCQS5cuMTA44K7zlSuX3W0dGKqzs/wlLly4wOVLl4b6+JK7b65evcrAkN2RY3TlyhUuXb7EwMAgg4OD7j4ZGBhw24BBd/1c/enqM1c/Xr50yT2eLrv9/ReHxmiQgYGrXLlymYGhb2pgqK39/f1cvux8z+GDB9lUkM+ur1ojeugAjZ027D1mzF0GzB16bCPImIvUXUvadf+XIKKuKTSXB/bbkNGxiOgmbSFNvfU0dNswtGhJz3PuiBfFR7k9olkla7G0G6+LiJq6tF8Li0OH1WEcBlunCXuXeRisXWbMQ7B2WrF2WqnvtNPY3YStvZ76jkZUyWqUCWpSs9ajTE6mtcNxE/4i//bkuyCi+/btY8aMGQQFBZGZmYmPjw9Tpky5rhiQBw4d4pGnHkOR6CSicWsVFGnzyKvNo6CmgOLaQorrCimuLaSotpDc8mwKq/Mpqi2gTF/CproiimoK2FRXxGZNMQVVeRRW51NcW+jUqylwo7A6n4KqvGEYqePSGwsj9YpqCkbZK6jKG/M0trHKjvWOscpfa33G0nH2WwEFVblsqiukuLaA/MpcimsLKdFtpkxfwmZNMUU1BWzWFJNbns3Gkiz3/WZNEUU1+WzWFFNYnU+5oZSYZCWKZBmGFi2tndd3wuDg4CCxsbE88sgjCIVCUlNT8fLyQq1WfyUP+bYyLhH9+OOPv1FojIqKCpKTkkhLTSF1dQZxq1OIjJWjSI4jNTOD1PRUUtJSSExNRp2UQGJaConpqSR9HTLSnEhPJTFtfL1ED/3EcfJddtz3I3VGPvO4JmekEZ+ajDoxnqT0VBJSU9x1Glk+MS2FuJSkr0dyEgmpySSkJhOfkkz8UDoxOYmsrCyODnmxxpKtW7fy5ptvjnv261iL011EZCwZGBid72nDVc5FXL4sNzBmvktcBGj0+77UdT12kSpX2lN3cOioMicJddXpy/pdvnyZurq6m05EMzLS+cDt/RversHBwTHbevny5THHyTNvZHtHynj9O9b7nDZGj6dn/QYHR48heIzzEBEd+Z4rly97kF04cvgwmwsL2bXzqzcrtfQ2YerQ4VojOpKUWdqNmNsMXwsX6RxZ9rsgop4e3JtJRBt77FjajdTWV5GWm4x6jRJBbAShiiCi1OFklax1l936RvNXElFbpwVzpwFTp/5rYXGM7tuxia0ZU6cRU6cJU6cZs8OMtdOGvauBpp4tNPe08NnBz4e+I9d3N+7n8Q8l3wURHRgYIC0tDR8fH1JSUpBKpSxYsIDY2NhrdjJduHCBzKy1LAv1Z0noQqb4vMCMhVOZ7DWZhYELmLfUm+enP8djLzzMg8/+Ef9gP2QJUh546n7uemQS9zx6N3c+cAd3P3oXt//x99zxwO28NOtFFgTMx2eptxPLhuDvhdeSuXj5fwlvf6/hOkPp+ct9mDeE+cuccOu49JZ6O+24bC5xwnupN95LvfHxd8J7pP2he29/L7z8vfAegpe/F95Lh+rjWdaFkfee7RtDz3upF/OW+uDj74W3vze+QX7M8ZvDYy8+yqSH7+TWe37Hbyf9L3/44x+47/H7mPTQRKb5TCM2Xc3zM57lrkfu5OkpTzHVayp+QUuYt8wH7yVe+Czxxme5Fxm56ez+aPfXD7KHvPnmmyxevJiFCxeSlJREdHQ0U6ZMYdu2bd/kE7xmGZeIxsfHM2nSpOs2uGHDBmJilMTEqpDFxhAVKyMiVoI4Xoo6UYk6VkG0WoFQKWOFIAJ5rOpvCoo4NaJoOeFiAYo4NTJ1jDt/LH2pSnlNkA3B814VG0tiQgKHDx8et79bW1vZtm3bsH9YXJ7QsdIwnMwMJyVf6niWc3kj4UtC6WnD5V112fMkq55ePFd6vDqNVc7l2R1ZD5c31NOGq351dXUUFxcDzmn0Dz/4kH17910z9u7Z60zv28fevXvZu2cv+/fv54PdH3DgiwMcPHiQ5ORk9uzZM6L/BodhZF97ElFPHZcXc2RbRtr96rEbHLM/xhpzz/4f790ukvlV4+L5A+XgFwfIz85l187hmyF27NhBUWEh69evpU5XQ0tPI2aHHku3cUzC44oFei34SxFR93GgHusvv5W9r/CIuoiusVXn3pBlc5jdhNxVh5EeUVeIJxfsXVbMnaYh4mh0E0hLtxlrj8UDVmzdVuxd9jFgGwZrtxVztxlLtwVLt8V577BgbDXR1N1EfUc9B46Mf+TrP7J8F0QU4LXXXmPBggUoFAoSExMJDw9HrVZf12zn/k/2sSpqBdPmT+b5V5/j5RmTmTp9Ov7+S1jst5Cnn3mcp55+hD8+MInElFhqNNXc9+B93HHX7fzutt/y+z/cyh0Tb+PX//sLbr39t7w45XmWBy1lSaAffoF++K34GlyLzgo//FZ64Fr0x3uXx/t8PfJ8r6cOY9gapbfCjyWBS1gS4I9f4HJ8V61g3lI/Hnr8IX7xq/9kwi1DBzfccgv/+4c7uOv++1jkv4SmrS3Mmvcqt99zK48/9yTPvfgKK1aFsmS5P/N9fViwZD4zfKZRUJJ73d/LO++8g5+fH0KhkPT0dMLDw1m1atVNP0p3XCI6adIkJkyYMGw94LVIQX4BMpkURYwCiVqGKE5OuDIKsVqIXClAHi1EqpQQJRezNCwIUYziBkOOKEY2dB0bYpV8nHIKxKroYXlCdzkFwhg5YlU0ETIxq6LCkaiViFQKJGolslglIpXcCbX8y7RKjlAlQxgjQ6iUIVBKx0SUUkJU9BCG0lKljNg4Ne+++457GnekNDc309PTM+xD8fSOeZK38byWY5Ec13S8y4ZLLg1N43qSEs+pYM9yrqlll42xiKgnqR2LlI5X7vLly2MSq0uXLlFaWkp2djYAOp0WVawKqUKCVD4ExZeQeORJhu7HgkAiIFqlIDsvmy+++IKEhATef//9Yf03HkEci4h+FRn8Knsjx2u8tEu+7sfHWO8eHBx0f29f9cPC0yN66OBBNq7PYueO4XHr3n3nHZ5+9DF+95v/YV3Wal5/fxtmhwFzpx7LGB7Rb4ObTkSHpqnrGiqpa6zC0m64IRuWvoqIukI2ebbPtS7W0m7E1mnBOkRE04aIaFNvPeY2g3PZQ7sR69D0vcXhJKJmhwlTpwmjw4it10bDaw00vNZA/fZ67NvsNGxroL7XiYZtjTRsa6S+twF7dz327nps3XbsXfXYe+uxbbNh67HQsM1Ofa8Va6cZW7cVi8NKU08TXxy6sYGv/17kuyKily9fRiKRsGjRIjIyMhCLxcTHx485qzKe7P5wF5HycLyXzeUV71eYOutVZr06m+XLluPv78dLLz3H5MnPc//9kwgLX0VO7gbunPgHJk66k/vuu4/7/3gf99wzkd//4bfcdc+dzJg5leDwVQQGBxAQ8o+NwOBAVgYHExgSQkBYGH4rAnn2xWe5485b+dd/+SE/vGUCP/rnn/CHifdw5913MWP2bEoqy3l+yrM88+ITvDT5JSZPnkFQcBQBAStYvGQhi5YuZL6/F2U11z8ruH//fgIDA4mNjUWtVjNz5kwaGhqu2871yphEdPv27e4j1IRC4XUZzM/PRyoTIY8RI1OKkMWIkSoFyJRCFDFC5EohcqWIKHEYgaGB7pM6vh7yUXnSGPmw0z4kSilipRixUoQoWjgEEZIYCVKVFKlKgiRGgkQlQRIjRaKUIY6WIY6WIlJIx7QpVEoRREsQxEgJlwuJUkoIlwkJEoUjUEoJlQoIl4uIUAiIiIkgXBlBuDKcsOhwwhRhhEWHER4dRoQygkhVJFGqKASxAgRqD4xzL0uUEZ8Wx3vvv8vpcWKwNjY20tHRMS4RHctTNh4p8dQZ6RF1iecUu6fuWB40T3I5Htny1PUkPC5v20iPqCt96dKlMe1dvnyZnJwcsrKyADCaDSSsiUeRKiM6RU50ihyFB6KHQTbiXk50qhxlqhx5kgT1aiU5JRv54osvUCqV/PnPfx7W39dC+jyJ6Nf1zdd5PsdLe46XJ7kcixx7vttTz9NzO1a7RhLRzz77jNWrV7Njx/BNiR/t/oDnH3yUib/6NUX5OWx7dxvWLitmx431Ut48IjpENB0GrJ1abF211DQUUV2/CUNrDdYOIzaHhW92qtLYRNQV0H5kPFCXrmdbzR0mjB1Gtr7RTHp2EmsK0tC2akgvTCO3bD35m9eTU5zJ2sIMNE3V2LqMWBwGbF1mTB0GMorSUK5RkJidQFJOIuoNalLykkjKjiMlJ4HU3ETWFKWxpjCNzKIMciuyyC5fz4aStawtTmdD6Ro2bk4neX00a4uSqO8xYukxYemx0tS7hS8OffMjBv+e5bsiouDcRzBt2jRiYmKIi4tj3rx5vP32tUex2fnBTkQqAX4hi5k+fzrTZn9JRBcvXsgzzz7B5Fee58GH70EoCiEvbx1333MHd909kYcffoiHHrqfiZN+z+9u/TX33DeJ2XNfJTwqlKDwVayK+MdGUPgqQsLDCIqIZJUgkuUhq3hh8vP87tb/4Z9vmcA//XACP/rRj5l0933cPvF2Zs6dQUVNOVNnTuHJZx7jpZdfYsqUGQQHRxIQuAJf/0UsXraIpUF+VGsrrvtbycvLIyQkhJSUFFatWsXixYvdm1NvpoxJRENCQtxE9Je//OV1uWXz8vKGE1E3xMhjJEiH7qPEYawIDXASw2uC80QPmVqOJEaKUCFConQ+EyvFiBTO00AkMeIhwukkpEK5AIlSjEwtdedLYsQIFUIEMgECuRCB3HV15gnlTgIrVooRKsVExYgRqqUIVc6j7MSxMgQxYuLXJBG7OpHYjETUGfHEr48neWMSGfnprNu0lg2lWWws20BORTYFNfls0hZTZiyhRL95FCrMZVRaKoah2lKFeYuZQ0cOcenS2B5Rg8HApk2bxvWY3mgZby3idy1fVY/o6GhiY2MB6H2tF+tWC5rGaupcaPDAWHkeqLFXUmOvpK6hGn2LhgaHjcOHDuHn54fdbr/uOv+19N/XybV4TDx1duzYQWRk5Kg4hbt2fsCLT7zCpFvvIa+giM4/baOhs4HGDjPW9r8Fj6iLiOqxdtZh7axF31qGvrUcc3sdVocBm8N6U4ioa9f8V8HcYcLgGE5ENa0aNlRkUaHfRLWmmPLaQtYXraa2oRJ7lxGrQ+/ccNRtJlCynMenPcrkBZOZtXQWr/rPZM6yWcwLmMOiVfNYEOiFb/AC/EMXsWiFN4tW+LB45Tz8ghawaIUPC1d4M99/Ji/PfIIgsT/Nr9sx95ow91ho7Gn6noiOI98lET116hQBAQH4+fmRkZFBUFAQGRkZ11x+5+6diFVClkcuZcaCGUyb/SqzZ80lYHkAS5f58dLk53jplee574GJRMdEYbfX8uKLj3P33Xfw2OOPcN99d/P7P/yWX/3659x970Tmes0kUhhOaFQIIYJ/bIRGhRIWFU5oVBQhIiErwoJ5ccrzPHD/RP7rP37Cj34wgR//80+4//6HuefeiUQIVtLR1cSsudN45rmneGnyZKa8Mp2QkEgCV6zEd+lifAN8CQhbisZYc93fybJlyxCJRCQnJzN16tTrDvf1TWUUEb148SI/+9nP3ER0woQJNDU1XbPBvLw8JDIx8hgpUqUUqVIyBCmyGJk7HSmOZEXICsQqyTVBFCNGqpYii5UhVomJUggQKUWIYsSIY8ROL6dailApRKgUIFIKESmFRCkiiZRHECWPdCNSHoFIKUQWKyU6QYE6VUV8ehwpa5NZk7OarML1FJTnU1KzmTJdGZWmKmqstdTa6jC1mKkyV5O1aQO6Rj3mVguWrVYsW63YO53rqOq77Ng7v7y6YHNYx4W1w4Kl3TwMW3qa2NrTOszzNFKKi4sJDQ3l888/5/jx4+6IBEePHuXYsWPOCAZ9fRw7doy+vj6OHj3qznPlu54dPnzYrdPX1+fW87weOnTIre+OGHDkiLusp53Dhw+7yx48eHCYnSNHjgyrk0vX05Yrffjw4WF1Onr0KAcPHhxV9tixYxw4cICAgACio6MZHBzknR3v0NK7BePW0XHnrhWGFq0zWHCPnY432zh0+BCTJ09m3bp1w+rkar9nH7ueHT16lAMHnOtLXXUeazxG9rfruacdz74eC571OXTo0KjxdOW5+tel79nXrrTr3WPZPXToEH19fRw/fpyGhgbmz5/vXq7gkv37PuWZJ17htlvvpbCknN5338TeZmNLqxF7298CETVhdQx5RB1arJ11WBy1WBx1TnLqMN7wNaI3gogWaPKptVRQo9uMuaGOourcUUS0vtvKsih/7npiIo9MfoRnZj7LC3Ne5NlpzzB51otMnTuZKbNeYrr3K8xe+Coz50/Hy3cW3kvm4OU3m8lzXuYVr6nMnDeNx55/kCDhcup7LJh7rE4i2tv4/dT8OPJdElGAyspK5s6dS2JiIgqFgiVLllzzeeE7d+9EGBPF8qhlbo/onNleBAasYHnAEp6f/DTPTX6Wp55/lAWLpxEc5MOjD93OpDtu4/4H7uHeP07it7/7FT//xX9y1z13Mtd71vdE1EVEBaGEC8IJE0QSIhKwKiKEp597jBeff5QH7v49P5owgX/90Y/57//6OXfc8Rumv/okASu8uPePd/Lcc88w5ZVXeGXqNEJDowhcuQrf5b74BfiyPNQfrfn6TjGzWCz4+vqSlpZGVFQUs2bN4rPPPvsmn9t1yygiWldXN4yETpgwgUWLFl2zwby8PMRyCbIYOVKlbBg88yLFUQSGrkSkklwDxM7zj2NECGOEQxARIY8gXBZOuCyCCHkkEYpIwmXhCJRRKBLlqNNUqNNUJK1LIiMnnfWF68gry6WoqpByfSm11gq09TWYmnVYt5qo77BQ32GlsdNKY6eNpi47TV12GrvtNHbXY+sw09BlQ9tYS0F1LrYOM7YOM5atRsytRsxtJizt5iHviGUEuTR5wDwK5jYT5jajB0w0dTVib7Wxd/9eDh46yMFDBznSd4QjRw5zpM9JDmQyGTNmzKCgoACz2YzNZsNqtaLT6bBarRiNRgwGA0ajEZ1Oh8lkwmKxYDAYsNvtaDQa9Ho9NpvNret6rtVqsVgs6PV6dDqd24bBYMBkMqHVajGZTBiNRqqrqzGZTFitVoVvyxQAACAASURBVGpqatDr9RiNRurq6tDpdNTW1rrzNBoNtbW17rTJZEKj0bjrYjab3Wm9Xu+uk9FopKqqym3PVYfa2lrq6uowGo2UlpYydepUpk+fzmeffca7O96hsbNh3FMyvg7aplpq66vQNtVi6TDSum0L3b3dPPzII4SHh1NbW4tWq3W3yWAwuOvsaofBYMBgMFBXV0ddXR0mk8l9b7FY3H3kKucaJ1f/uGxqtVqMRiMmk8mt7+on11jX1tZiNpvdfecaM9f4eUKr1Y6y6Rp7l31XeavV6s43m83U1tai0WgwGo1YrVYEAgHTpk3DbDJx7uw5Dh06xOHDh9jW281Lzz7Bbb/7H9Iyk+h5rxtLuwlbqxFb+40jod8NEdVjdWiwDcXadOb99RFR7VYtBZp8UrMSCI1cxoa8dIpqctE0VTkD2ruIaJeFMEUwj770CI++/Ch/fPp+HnzuYR566iGeef5Jnn3xaabPfAXvBXMJCl9JfEos63My2Vi4ntxNG0lZm876gjxyivKYs3A2UdERNG1vwDxERht7viei48l3TUQ/+eQT5s6dS1BQECkpKSxZsgSj8dqOQd75wU6EMQKWRS51E9GZr85hReAq/PwX8dQLj/H81OeZ6T0V7/nPs3DB07zwzN3876/+m4l3/p5775vEr379c2697Tc88tiDePnMRiiJIlwYRpjoS4QIQgiKDCJUGEqYKIxQYag7/feCUGEowVHBBEcFu9sWLgwnTBBOqDiKEEEYz7/4FJNfeJyH77mTf5kwgZ/88J+5ZcIEfve//xcfnyeYMuU+fvTDCfzyF7/ghRde5OUpkwkODWdFUBCLly7GN2AxKyMCrouIXr16lYiICKKiokhNTWXu3LnExcV9ZzN4o4jotGnTRhHRH//4x5w8efKaDObn5zs3eIy1ztNj7WWEOIqA0EBEKrET6qGrykk4BUrncXGRiigiFZFERUcSqQgjUhGOWC1CmawgLkNN8rok1uRmsHFzFvnleWyqKabSUIGuXoulxYSlxUyDo56mzkYaHQ00dNRjb7dhbzdjbzdS32GkvsNEfYcJe7txCAZsbQbsbQYsbXpMbTosHQbMbTrsXWY0TdUU1GQPBfY1YNyqxdxuwNphxNphxNzujDFo2qofN/TMSJjb9MNgatPT4LBTZ6klMCQAv0BfgiOCCIsMJSQsGKFYgEZTx9q1a6mqquK1117j/PnznDt3jjNnzrjTZ8+e5dy5c26cPXuW8+fPc/bsWfczT/0zZ84MK+dp5+zZs5w+fdr9zLP8qVOnhul5pi9cuMDp06c5ffr0KNuu9507d85t+/Tp0257Z86c4ezZs5w5c8Zd/ty5c5w8edJd1rPOx44dIyQkBLFYzKX+S7z19p9o6vrmRNTzFJD6Livtr7fyyacf4+PjQ1VVlbu+I+vhCVf+qVOnOHny5LBn58+f59SpU+4+cdkaOUae19OnT7v7znM8Pd99/vx599h55l+8eNFdJ9e7XWmXvbNnz3Ly5MlhdfBsy/nz5zl9+rS7LefOncNoNFJWVkZOTi6FRSUsDQwgODyAFQFz8fV+gkfu/X/4LZ1M4zYdll4Lhk4L5htIQm8uEfWMqWnA1ulMm9sNWDoM2Du/3c75m0FE8zV5JK1VsyLEl/W5aeRVbqS2sRxb95dE1N5pQZYo4eXZL/Hky0/zh/vu4I777uCOu+7k7rvv4r777uPVmTPwX7YEdVwMZZUl1BlqqdJUYLBqqTFoKavTUVpdw5IVS4mQR2LvsmPutmLusTmJ6OEbfy7134N810R0YGCApKQkFi5cyJo1a4iIiCAyMtJ9UMhXyc7dOxGrRQQIlvPqwleZMXcWc2Z7s2plMKGRwXj7zeHVBTOZvWA6K4JeZWXgC7z0zERuv/WXTLzz99xx52384pf/j7vvuZPHn3wE73lzEEq/J6LOtoUSLgwjVBhOqDiSUEEYL778FK+88BgP3XU7/zphAj+95Z/48Q9u4fbf/V8WzHsIn3mP8JN/+QG3/OAW/vCH2wlcGYhUoWBFcDCL/BexePliVkUGXhcRffvtt1m4cCEJCQnI5XKmT5+Ow/Hdxfy94Scr5eblIZFLEcfIhnavyxDFSBEqpQiVEkRKKVK1AkG0mOVhKxDECIiMjiBcHk6YPIwweRgR0REIVUJkiTJi0mKIWxPH+uJMcss3sElTSI21Av0WDZatRqztJuwdZuo7rTR02mjotNPQaafeYcPeYcXWZsHaZh6OrUPr09p1X6JNi7Vdh61DPyzf3K7F2K7BMARbt5HqxnJyazdg6TJg6TJg7NBicjjJ6rXBOAqmNt0o1DusaG0avBbO5ZVZU5i32If5i+fhM9+bJf5+1NRUu71ye/eOf8b3jZTx1g5+3ZrCG/3L6qvet3LlSpRKJQB/fuctWnqbvvG0vOuINWOrDnuXBcef2jh6tI9Zs2ZRVVV13XW+nhigf0m53jp1dnZSWFiASCRm3fqNzFngzTy/mcye/QS+3o/y0D3/yRzvp6jvqcXQrUPrMGJyjA7X9G0Io3loqv+GHvE5KsSU2QPj6XyzuruOKfWMI/q15HtoB3zLa02kZyeRkZ+KtlVDXl0ulYYSyqvz0RjLyK/KpraxAmuPAbNDT323haZuOzGpSqZ5TeOZl57hD3fdwaT77mbSXfdw9133cs9d97BgwULCQkNJS09FZ9RQ32zH1mylqb0RQ4OFMo2eap2OlRFBiFRi6rvsmHtsWLc10NBdz+eHvieiY8l3TUQB/vSnPzF9+nT3GsB58+bR29v7teV2fbATSayYVZIVzFo8i1e9ZjPPZyFL/QMIjQxiSYgvc/19mL/MG2n0IkJWPcuLT93GHbf+D3fc8Vt+d+v/8PNf/CePPPrA90R0LI+oKJQQYdgQEQ3hxZeeYtqLj/P4vXfwkwkT+OkPfshPbrmFibf9B/N97mLhvAf595/8kAkTfsB//J//y/MvPYfPgvn4Bwbit9wP3+WLWRkZgNZ07UR09erVhIaGkpGRga+vL6tWreLs2bPf5nO7LrnhRDQnJwdZtAxFQjQilQSBUohgaC2nQCkkUh6FIFpIlELAsrAAJAlS5MlyYjPjWJ2/mtyKXEr1ZVSYK9E0aDG2mrC2W53T4z02Grqt1HdZsHeZsTk8vBUdRifJc09/u/5zM42NDgOWDv3Xwtyhx9ChQ9+uRd+uxdJtorKhnJzajZi7jJi7jBg6dJiuwdZXwdSmHYV6hxWNtY65C+Yw+dWXmbtgDvMXzcN7nhdBwas4duwYa9euJSoqivPnzzM4OMiJEyeGrSkdHHSe8HP69OlRIZtc3i3PvCtXrnDy5MlR61L7+/s5c+bMqF3zLi/ayED3p06dcod6cum6PGwjSY6rHp67va9cucLp06e5OHS6k8v25cuXOXXqFP39/cNsnzt3josXL3Lp0iWWLFmCSCQC4K133vpWa0QNLVos7Ua0TbU09tppe30rh48c5tlnn3XHKnX1zchoBWfOnOHChQvDdrNfvHiRkydPDuvHK1euuD2OY/XNyM2CV65c4cSJE8PieA4ODo7Zv4ODg5w+fXqU58NzjDx37F+4cIEzZ86447S6oiCcOnWK8+fPD4tg4GoLQG9vL9OnT2fXzl1s6+1lse8ivBZ6MW3Gy3h7TeXhRyaxLGQRTa/VY+oyYGzTOD2KfxNE1MiXy21sWNvtWDs8Nij9NRHRvBR0bToKtPmU6zZRo9tMjW4zRbV5aLZUYu32JKL1xGXE4uM3jxdfeYk7Jk7kzol3c+89D3Dv3fdz/70PsmiRLzKFnPTMdDQmDQ1tDdS317OlewulukriV6eRvDqVRcsXoUyJprHXjrnHgnVbPQ3dDXx+8HsiOpb8JYjopUuXCAkJwdfXl4yMDIKDg0lNTf3aci4iGixdxazFs5kxdxaLFvoxf54vvssWMS/Ai9lLfAiIWEZiSgChQU/x8tO3cudvf85tt/2KX/36/3Hb73/Dk089yqOPP4TP/LnfE9GRRFQUSqg4glBBCC+9/CQzXn6Sp+6fxE8nTOCnE37AT2+5hUm3/TuLFkzEb/H9/OynP+SHE/6Ff/7Rj5kwYQJ3TLoT/8BAFvkvZLGLiF6jR/TgwYMsWbIEhUJBUlISM2fOvG4ny7eVG+8Rzc1FKBUQER1BiCSIEHEQkdERiGOFRCcrSMiMZ11BJhuK15O0PhHdFh3GViPWDis2h8254WcINocNm8OGtcPinBpv17lhatOOQejGnvYeE9fovTR1GDB06NG369C367B0m6lsqCCnNhtzlwlzlwlDhx6jw4ClQ/eNYWrTjMJ4RHTBovksD1zGufPnWL9+PWFhYRw75jwr3mg0curUqWFj8tlnn4254ayzs5MPP/xwWN7ly5ex2Wz09/ezb98+mpubOXjwIJ9//jmNjY2jbLS0tLBzxGk6AwMDaLVajh8/Piz/o48+oqXFeeTYa6+9RktLC/39/bz++utjhhOx2WwcOnRoWN7p06cxmUyjogT09vby9ttvMzg4yPLlywkMDKS/v5+33n2L5p5v5xE1turQNNbQ0GOjdXszn3z6CS+//DLJycmA8w+5vr5+VP3b29vZvXv4yRanTp1Cp9ONIpfvvvsu3d3d7nLNzc0MDg7icDhGebv7+/tpbGzk3Llzw/J37do15gkYra2tfPrpp5w/f56Ghgbee+89Ll68SH19/bAfIgDvvffemFMyzc3NHidJOeXEiROYzWbAGUZs9uzZvPnmm/z5zTfw9/VllrcP02Z547csiKWrQpAmxWF02LF0mrC3a7Bs1f2NEVEb1vb6IdiHiOlfHxHVt+vJq82lqCqHyroiymoKKKjKHkFErTR1NZCYkcBMr5nM9fYiKDiUoJVhhIVEERYSSVBQKMsDAhHJxQgVIgIjVxIiD2WVdBXBiiCWRizDL8gf/5WLmbVgGrEZ0TT0WDF3W7Busw8R0e/XiI4lfwkiCs4NKXPmzEGpVBIbG4uPjw979uz5yjLOqXkhQZKVvLpwJtNmz2DRIj+W+i9nWdBSFgUtwCtwASuFASQkLyd05eNMfe42bv/Nf/Gb3/w3//3z/+C+P97N4088zEOP3O8kot+vEfVo2xARlYQTIgzhxZef4NUpT/LMg3fxbxMmOMnoD25h4q0/xd/3bpb5P8h//vst/GiIiP7k3/6F+x96gKWBK1gSsAS/AL/r8oiWl5cTGBhISkoKISEhzJw5kwMHvttoFzeciObl5aFQS0lYpyZlYwJZmzPZrCmk2lqOsUWL3WGmsduGoVlDVslamnobsTqsmLYaMbWZnP+4OyxYOpwbeIxbDRhadZjatZjaNcNg6dCOgO76yOh43lIPmDpMGNqN6NsM6NsNWLqsVDZUkVOTi7nLgrnTgqHDiLHDNESGbx4R9Vowl3kLffBdspjAlQGcOHGC2tpaYmJiaGpqYteuXVRVVfHWW2+xb98+9u/fz759+3A4HFRVVbFr1y53/t69e9BqtbS1tbFnzx4+/vhj9u/fz9tvv01NTQ07duzAYDBQVFSERqOhu7ubqqoqdu7cyd69e/noo4/Ys2cPNTU1tLS08MEHH7hPIvrzn/9MSUkJ27dvZ8+ePc7TifbupbW1ldraWt59912SkpJIT0/H4XBgtVqxWa18+OGHbv0dO96joqKCzs5O9u7dy549e9i/fz+9vb2Ulpby/vvvs2fPHvYM1cNmtWK1Wtm2bRtSqZTk5GSuXr3Ke++/65ya/4YeUVOb3r1pqbHXTu973Rw4cICQkBDUajVvv/22u3937tzJJ5984m5DdXU1TVua2LN3D59++in79u2jp6eH0tJS3nrrLfbv38/HH3/Mhx9+6N5s9Oabb5KUlERiYiLbt2/HYDCwdetWd/td/esaZ9cY79mzhy1NTWi1Wj766CN3/gcffEBtbS09PT10dXWSk5NNdnY2b731FjU1Nbzxxhvu8dmzZw8NDQ1otRp27nzf/c7du3ej0+loaWlx2/7444/Zvn07xcXF7Nixg3Xr1iEUCvnwww/Zvr0Xv6W+zPTxYpaXN/5LAli2LBCRSoa2bSjOZEed88dku+mvl4i6Nil1OH8oOwloA9b2Rue1wzZC56+EiLbpKNQVUGUsRW+uQGeppLguH01L1SgimrwmGV9/X0JCwxFGSRGESxAL5YhFMuRKJatCQxAqRGQVbSB2TRzyDAXiNDHSDCmydCnqjGhiEkVEyleQukFFQ48Zc68J63Y7Dd2N3xPRceQvRUT7+vqYP38+K1asIDU1lWXLln2t92vnB+8jSxCxUrQc36BFLAhcyLxlC1gUsJCAsGX4h/njFTiPyOgQkpNWELnySaY+91t+/78/59e/+jm//vXPefSxh3j4kft58OE/4jN/LgJx5CgiGioMJUQQQrg4nAhJBOHi8L84cbyRCBeHEy4OH0awQyURBInDCRKFEiqNZKUglOcmP830Vx7n+Ufu5acTJvAfP/gB//ajCUy6/WcsW/QAK/yf4Gf/50f88Ic/5F9+9E/8n3//Vx54+AECglYx5dWpvDLnFULEQejM2q/9Hk6fPo2vry9CoZCUlBS8vb3JzMy8UZ/bNcsNJ6Ims5EaQxV2h4n6TjNNPTaat9fT2G2hoctMY7eVhm4L+i21ZBamY+4wY2w3od9qwNBmxNhucsPQZsTQZkS/VT+0DnM4jA7NqDyTQ4+pYwgOPaYhr+ZomDB1WDC1W5xXV7p9dJ6hzYx+qwl9mwlLp52q+hpyqvMxd9owO6wY2s2YOswjiKh+nPux85zT8ZphV7vDSp21jrkLh4jowrn4LPJh3sJ5rAxawYmTJ3nttdfIz8tHKBIRFBSMSqUiJCQEpVJJSkoqSqUSoVBITIyK8PBw4uLiSUpKIipKgFKpRCKREhUlICUlldjYWEJDw4iNjSUoKAiZTEZOTg4hISGEhIQQExNDREQEsbGxqFQqIiMjiY6OJjIyCqFIRHx8AtHR0YSFhREToyI4OAS5XE5sbBxisRihUIhcLidwxQoSExNZvXo1gYGByGQyhEIhYrGYlJQUkpKSCAsLR6VSueuenJxCdHS0u40CgQB1XCwJSYmIxGIkUikRUVEs8fcnJycHs9nMgQMHMNvMbOl2ekRNLXpMLXqMrV9iZN4onRYdhhanZ9TmMFNlrsBab6WsrIzk5BS391WlUhMWFk5iYhLJySlEREQik8mIjIxEKBCSlurs37DQMJRKJeHh4SiVSpKTkhBECZBKpYjFEvz9l7JmTSapqWksW7YchSKaiIgIJBIJqalpxMTEEBQUhEqlIiIyEqVSSVJSEpGRUYjFYuc7wsJITk4mLi6OsLBwFAoFUQIBkZGR5OXno1AoCAxcgVodi0AgIiZGTXx8AlKpDLFYgkwmJygomPj4RJKSkgkJCUWpVCEWSxCLJaSkpJKY6Byj6Oho/P39USgU5OcX8Nlnn9PV282igMV4LfJi1uxpvDr5eZ5+/I9ESVax5Y1GDNsM6Lt1mB1ff2znXwcRNXkQ0cYRRNR8E4loPZ7rUV2k3Vk350lJZk8impNERn7a/2fvPaPbuq6Ebbk7jkvsuMV23Etsq1G9klQjKTZ0gL0XgARAEJ1gJ8UmihLVCyV2gCAIAmAvYlclJdkpTptJsqa9M5lZk0zerHgl7/oy83w/KDKSLdtKYseZGe219uK9Fwf3nHvv4cFz9zl7b1xnOznmOIKztxW76zSePjvHWw/RMdJGz/luvFNu+s/1MDjTT3lNGelZGRQWF6NSqlFmZKNWa9Hk6NDk5qA16TAWm2nvseMcdtI22EbrUCstIy20DjZh7z1Di/sY+46XUnnIRs9UB74Lbnov9d6xiH6KfFkgCvPL5xbyz5tMJmJiYrh06dJNS31ulO//6HvobNmk65PItipJM6QhSBYiTRWTqk4mQZWEMEWC1qaksjwTXfoWgre+wKsvPs0Lzz3HG2+8ysaNa1i2/G1WrVmBWCpAm6sm+xbWwv99IKohTa++DqJaUrVZ+O/azO7g9Wxbt4xHlizh0bvu4qH7l/D2G4+TKF9NRqI/X3vsPpbcs4QH7ruHpx5/lLXr16DSatiwdRNbQ7agMmbi8rk+tR/8+7//O/X19YtOSnq9npCQEK5du/ZFdLtPlc8dRPvP9tI17GT4Qj+HW+qxVprQFak52XGMgXM9i6nnnIN2ak9Wzw+w1wdiz3X9tOl076Qb74Qb70QX3ltOp3fim3LO66TzI9Dn/ojF9LMtot7xbjzj3XgnPLjHuuiZ9uEYsHO47RDeCQ/eCQ/d42684wuORx+p42N13qpMN57xLjxjrnlv+3EXnjEXA9N92HscCGKEbA/fQWSUAEmMFLFCQmJqIr/58ENcXS5SUlPp6++np7efffvqcXV1MzJ6lv7+Ac6OjdPW5uDYsZP09PZz9uw4o6NjDA4Ocfz4Sc6caWZ4eIT+gUFGRkbxeLzs319Pb08vR48dIzomjtbWNuwOB/X1h/D19HB2bJzh4RH6+vo5eOgwJ042MDwyyvDwCEPDI/h8PVRX1+J0uhgZOcvg4BD9A4O0tLSyr24/g0NDaLQ5ZKs1DA+PcPjIMY4dP0Fvbz8Dg0MMDQ3j7vZSW7ufdruD4eFRfL4e+vsHcXR0UlOzjy63m5GzZxkdH2dgeJj6w0c4fPw4Hl8PEqmcfXV1fP/7P6B6Xy0DU4N4R7vxjHTTPezGPdSFZ6Qb72g33pF59YzO6+L+oroXv9c74eNo8xEKywtJS1NisdgYHR3jTGMz+/cfpLevn5GRUUZGxxgcGmZ/3QGaGpsZGx1jcGCQgb5+HO0O9tXsw+vxcnbkLMNDwwwNDnH8xCkOHzlGb18fSclpmM15jIycZf+BQzQ2tTB69ixDQyMMj4zS3e2hbv8BXF1djIyOMjAwyMjoKA2nz3Cq4Qz9AwMMDY0wODjEwOAwdQcO4uhw4nJ1IZVFcejwUbzeHvbtq6fb42NkZJyhoVGGhkY5fbqFI0dOMTR0ltHRcYaHzzI0NMr+A4dpaGhkdHSM4ZGzDA+PYrd3sLe2jr6+AcrKK5HJo/n7v/8H5uZmiY2PQh4lISwimMDtm1m+6i3UZhXjV8bwTnvxzHjx3kb++D9F+2d62Huiio6B9o/lgv/T6/lDSLab9U9v541e/gvt9o67SVDHcqrjBMPnhumd6KVvqp/eqV68E168U1680/PqmfbQNdmFZ9rD0KUBqo7uoeZ4Je5RJ2dcJ9l/opow0Q6KKyzUHa3EOdhG/znfYr19Uz6KawtJz02loCoflVGJxqomS5+F1pSD1pKDNi8HQ4mBxu4G2gdbaR1spHnoDM3Dp2npP0lb30nO+E5Q01BJ1dESfGNtdPSfwjPRzvClfv7p53cC2t9KvkwQff/99wkKCiIrK4vKykqio6NRKBT8+te/vmX57//oA4xFWjKNqWRZMsk0ZRCdFUOsKnoRRCVpcnLyVVRXZpGbsXURRF984XlWrFzKxk1reePNV+YtolIhmtzsOyB6HUTTbwDRNG0W/ru2EBqygW3rlvPwkiU8suQuHrr/Lr715hMkytegTtvBE4/fz5K7lnDfPXfx9cce5o23XmdbcBCvvPEa/ru3ojIpcfk+3SI6NzdHQEAAWq2W6upqxGIxWVlZn/hC8kXK5w6ivhEv9oFW+qZ9HGzaj6XCiL4kh1PO44sDbe+UF+egnX2nahYH5BvDHd3+1PqtYLXzesBpx3UQXZjCvxWIfrbeGHKp+6yL3ikvHQPtHGk9uFjm82j3wvUvaPeYi6Hzg3QOuAiPimSnIAhxnBRxrAxZjJx0VTr//C//wtj4OI3NTXg8PuoPHGTfvgNUV++lubmF//e7/8ehg4eoqztA7d46CgqKuHx5lp/89Kfk5xdSXV1L3b79VFZW8+FvPqS3p4/qqhr276/n5OkGTDYL9UcOU127l/LqSmrq9lFYWszkzDQ//tu/wZpvo6i4hMOHj3Lo0BH+4z/+g4GBQaqra6iq3MvRI8doaWnlNx9+yOmG05SXlVJfX09NTTUlpSXU1x+gprqa+gMHqKysoKqyin/7t39jZGSUstJyKitqKC0t5/ChI/zud7+jqamZvbX72F9XT35+IR6vl3/913+lpLSE/OJCDh85QvmecrQ6HT/80Q/56U9/SlnlHoZnBvGedeMZdeMe6aJryIVn1L14zDPqxnP2ul7fXyw/7KJn3Ev3iIu+yR4ONNRRXVfFmTPNDA4McepkA3V1B6ipriU/v4DLly/z/Q9+wJ49lRw5coza/XXs3b+Pf//FL3C6OqnaW0N5xR5Kykvp6u7in//lX6ioqqSyspp9tQeoqqymqnIvB/Yf5MD+evbW7GNf7X6qq2v48MMPcXQ62VNTSU1dLYWlxXR0Ovnwt7+lqraGssoKKvdWU1hazE9/9jO++93vUVZaTm3tfhoazmCzFVC7t459tXXU1NRSW1NHWfkemlpb+cV//JLKmr0Ul1dw8Ohxyior+c53v8t3P/iA6tp97K3bz5Gjxzl6+Bg///nPcTo7KSspp7KimkMHD2Ox5HHw4GF+85sPmZ6cJCEhGrlCTKQwjI0BG3ht6askZSczemmU3uke3GPdt3zp/LxB9Eb4/Lzr+VPhc2FMWYDQBRDtnfLSfdZFoiaO052nGDo3jGfER+9EH31T/XjGfXgmvbgnu+ma6MI91Y1nZt4q2n+hD9teKwV783CPODllP0Zb9xlqD+/hdNsRDhyvpqO/nf6ZnsV70DvlpbS+iOScBFTWDDLNaWTblKjzNOTY9GjzcsjJ12CtMNPkOU37UAttQ020DjXQMtxA2+Ap2vtPcbr3JHsb91J9vAzfSCudvSfwjLcwfKmXf7rjNX9L+TJB9L/+67+wWCyL+efT0tIQi8UfW9O/IN//0QeYS3JRGlNRmtPJsqpIMaSSokskXZtKgioJWYYCXX4WtTVqcjP8Cd76TV795tO89M1vsmr1ClavZMZRaQAAIABJREFUWcFLLz/PCr+ld6bmPwKiGblqMm+yiG4hLHQj29cv56tLlvDVJUt46P67efvNJ0hSrMGQvZsnn7yfu+5ewle/8iBPP/4YX3/q6zz4yMPcdd89BIb6k3UbIOp2uwkJCaGwsJC8vDwEAgHDw8NfRJf7TPlCQLRjoJ3hiwMcOLMPfUkOWdZMTnYcuwOifwSIesZc9E72YO9xEK6IJEgYjCBaRKRciDhKSmJqErUH9lNeWUFpSQmiSAFSoZim02fQZqkJC95NXU0tu7btwGo0c/LYcUJ2BpGZloHFZCZ45y4O1h2gonQP27YGUFVegVQoJikuAXtLGwlx0YSFBpNnMRKwdRN5FiNNjQ0E7dxOUkIchlwtAVs3Ub+/jsqyPQRuDaCitJwoqYwoqRx7SxvZyixCdgVRU1nFzm2B6HUazpw6TtCObSTFx6BWZbLNfwt1e6s4UFvDNv8tFNlsRMvlREsVtDQ2kZqYRMiuIOr21hKyK4j05FRaG5uRCERIxQIKbBYC/DdTWlpIVdUe/AM2o9Vl4/Z08bOf/Yz9h+sYnOmje6wL91kXXaOduEacuM+6PlO7x1y4z3bSMWTHOWRn+NIANScqaGg+xcToGGVFJQRu8ceo08/f3x27SEtKQafWsjNwO0cOHWJPZSmB2/0pKy9hd1gwKWmJnGlqQCiORCoXU1hkY/OWjRTa8jl59Di7tu0gO1NFWlIKQdt3cvzwUcqLStkRsJ2aikoiwneTkhzP6VPHiY+NQhARSuWeMgL9N2PLM3Ps6CFCQ3ah1+WgzVYTsTuM1sYmDDm57AjYhtVoJnx3KCkJSTha7cTFxBAStJM9pSUEbN1Mgc3CyeNHCdq1Ha1ahV6nJTQkiKOH6qkoLWeH/zaq9lSwOyiE+OhYWs40ERcdQ2hQCNV7Kjl66DBlpSXExUUhlQsJiwxhY8B6XnzzeQSxAnon5zOOeSa9fzEQdY924h7tXPwf/bIg9MaxbmEcXGifa7iD/pkeeqe8JGriOOE4zvD5EfonB+kZ78U37qN3qg/vpBfvlGfeKjrjxXfOg2eym54ZH5qCbLQF2XQNd3Ci/Qie0U56xtw4e1o52nTgYyDqm+jmUPMB9p2q4bj9CKecxznWfpgT9pOcbG/gRPtJjrUdo6HzBJ0jHbQPttA+1ET70Bnahk9jHzqNfeA0TX2nOWivp/ZUBZ6hZtyDp/GOtzF4oedO+KZPkC8TRGHeyXTXrl2YTCZKSkqIiIigqKjoYw6QcH2NaHEOmYYUVOYM1LZsMiyZZBhTychJI0GVhDwzCl1BFnW1Oegz/QnxnwfRV15+iZUrl/LOu2/ywovfYNmKd5DIhOSacu6AaG4WWTeAaJZBS5omi4BdWwgL27QIol9ZsoSv3LcAomsx54Tz9FMPsOSuJXzlgfv4xlNP8MyzT/PIE49zz4P3EXAdRDs/ZY3o+995H5lMRmJi4mKCA5lMxi9/+csvstt9onxBINpG37SPwy315NdYMZbl3rGI/gkg2jfZg7O/k5iMOCTxUuIzE0lXZ5KqTCM5I4Ucgx5lVhbpqanYjAaMWi3O1hbMOh0FZhM2owGzTkdVSQnO1lZys7MotlopMJkwarU0nTxJ/d69GDRq8vR68k1GjFotna0t5OdoKNCo0SYmYM7MoMpqpfPUSaxZKsqNBqqsFqxZKppPHKeuqgqtUolFp8NmNGLUarA3NWHUarHodFj1uVj1OdTsKabp1FG0qjQ0yjRysjLIVSs5Wl/LvqoytKp0bMZcrPpccrOzcba2YjMYKLSYMWo08+006LE3NZJvyKXMaqLIpMeiU3OkvpaaylJSUuJJSU8gR5/N1feu0DPsY+B8L+7xTrrGOnGdddI52kHXWOdn63gnnWc76Bi20zXeiW/GQ8ewg8tzFzlUV4c6PQNNZiaWXB0tDacw5eRgMxoozc8nNzub5lMnqKsoI1eVgVWnwaJTo8/OpNvRSoEpl2KriWKrEZMmi/raGk4dPowqNQV1Rga52VlolUoczc1UlhSjV6sptlgo0uvIV2cx4HBQlKOlUKulVJ+LMT2dE3urcTWcwqLKpMRiosBsxqjV0NrQQFVpCQaNhoykJLRKJQaNBrfdTp5OS6XVRIlOS75axZGKMloOHcCiyqDclEuFxYg+NQnHqRNUlRRTYDaRZzBQYDZTYrNd71fZWPV6lMnJWPV6crVqsrIzSc9IJjU9CXmclJ3h20nXpTF0bpChi4P4pnv4qKPSFwGi3nE3HQPtuIY7FkNxfZkg2jvlXRxT+qZ9eMa6cA7acQ13LI43Sdp4TneeYuziGMMzIwxOD9Iz3kPPRA9DF4cYvjzE4KVBes756J5y0z3hpvdcD5qCbDT5WXQOOTjjOolvwo13rAtnfxtnOk/iHLR/DESPtR+mqfv0YtIG14gT94ibriE3nlEPruFOHP1tdAy2Yx9swz7UQvtwE+3DjTiGzmDvP0PLQBOnvKc41FyHb6SN3rE2eqc6GLrYdwdEP0G+bBD9zW9+Q0pKCklJSYve0oGBgbhcH19X+MO/+cEiiCpN6agsStLNGWSa0snUpZOsTkWhikFfpGb/Ph0GZSBBW1/g9Zee4bVXXmbZsrd5481XePYbT7Jy1TJkctEnes1najMXoW0BTr9sgPwiQTRbryFTp0apU5Gt15KuycJ/52ZCQzcStNlvHkLvuouHHryHt69PzVt1kTzzzIMsuWsJD9x3L88++TjPfONpHnvqSe594H4Cdn86iP72t78lMysDgVCAyWSmsLCQiIgIGhoavuhu94nyuYNoz6gXR38bA+d62XeqBm1BNpmmNE44jjJwrvcOiP4RIDow3UfngAulMYv0nAzK9u2h9nAdBqsRY54Jg8WMrbCAsuJi0mNjiJdJaD5xjAS5lLS4GEyabBLkUqw6LWeOHiZaJCAnIw2dMoMoYSTHD9RRbDGhEERg1qrJSkkiViqm6dgRlDHRqOOiKNJmExe+G2NaCs0H9xMTFoIhNZm8rAziI8M5tq+WQpMBaXgo+iwlGQlxxEnFNB47gio5kbS4GCw5GuSRYRg1So7V1yAO24UmIwmbQYMkPIhDtRUUmnUohKGYNCrUaSlECSNpOnYUdVoKCXIpuapMYiUilEkJHNu/jzixCE1SAjZNFrHCcGr3FFFVXkBkZDAaXSbmvFz0lhwONhyg75wP10QHrvEOOsccOM/acY133JY6RtroHHPQNeHEPdnJSfcxLAUGCo0GrDotUcJIdMoMTh2qJ1okICslCb0qE1lEGPsryik25iLbvQt1cjxZCTGkRkloP3mEFIWErMRYrBoVMcJwSqxm9paVIIsIQ6fMwKxVI4sI4/iBOiw5GmKlYmy5OagT41FGyWg/cogMuZTsuGhMGakkiyKpspg4UVNBbNhutCnJGLJVKAQRHK2rxaTJJk4qJt+QS2ZiPDESEWeOHkadnIQqJgpbtor4yDBq8iwcq9xDXHgouSmJmDLSSIiM4HhNNYVGA/EyCWatmoyEONLiYjh1qJ54mYR4mYTy/DwKLSb0Oi0Wq5GiYhuHjtZTUGYjXZOKsdhI/1QfvdO98859fyEQtfe14hy0L4Lon5uS889t2wKM9k37cA130OprWmyrb6Kb5JwEmrrO0NXnwrangKqDVXQPd9Mz3sPh5oPUnqymrnEfTb5Ges/58Ex203u+F1OFEXO5HuegnSOtB2l0N+Dob+NM1ykOnK7F0d92E4h6x900uhto9pyZh82BdjoG2rH3tdMx4MQ56MQ52EHnoAPHYDuOoTYcw604hptxDDfTMdSMvb+RtqFW2gbbOdlxlP7xToamOxk438XIpYE7KT4/Qb5sEAVobGxELpdTXl5OXl4eQUFBZGZmfizpxvd+8F30BRqUpjRU5gyU5kxSjWlkGNPI1KWTqkkjShWLoVjD/n06jKptBG15gTdefpbXXnmZd999i1dfe5Enn/oafquXI1OIbzk1/z89fNMngahSpyZLp0J9HUS37txM6O4NBPuv5oElS/jK3Xfx1YduANHcSL7xjQdZcvcSHrz/Xp75+td45hvzFtEbQfSTpuY/+P4HbN2+BalMQllZGTqdDpFI9BdLinMr+fy95oe6cQ7ZGTjXe9MPy42Q1TPpoWOgnb0nqha9WhfD5Yx1/VlA551w0jvTQUvPCTqHW+idduGd6PgYiHrH3R+Dv09Ov/mHsn3TPux9rbcE0Y/D5K2v5VblbgWi/dN9OHo7iEqLISYtlmyTBnORFZU2G6VGRVXtXuoPH+RMwymsOi35Bh397k7K8iwUGPUc27+PXGUG9dUVuNtb0WWmU1VUQG15CdqMNFytzRw/UEdOZjrHD9RRYNRTZDLg7XRQmG/CatJy6sRB1Fkp1FQW09nRjE6TQVlJHqXFFrIyk2k9fZLThw+iy0znaN08lBYY9fS6nOwtKyFXmcHRfXvRZ2VyoLoMV9tpdKpU6iqKqa8pR5uZjKPpJCcO1qLNTOZIbTWleRZsuTn0d3WypyAPsyab4wfq0GcpqSjMx+d0YFFns8dk4GB5MfrMVE4d2kfjqcMolUkcOryXYycP8pOf/C0TF8YYuthH1/i8hbNrzLlo6XSd7aDzuro+sr94fMxJ15gT54iDnnNehi708/N//TkTw0M0HKpHm5FGfXUF9jMN6JTpVBcXUlmYT05mOm2nT3Jofw3arFTqasow67MozjfidraQZ9KSZ8phX3UpmswUTh85RMvJ42jSUzlSW0NdRTn6rExcrU0c2VeDMVvFsf37MOk1FNgMeLsdWE1azEYNB+oqyFYlc/jgXuytDahVKVSXFVFVXIQ+S4nX0c6RfTXos5ScrN9PscVIWZ6FXlcHhVYTVpOevVUVaLKVHDm4n/bmRrKV6dRUlrOntAitWkWnvXW+r2Skcbi2GrM2myKzEW+HnQJjLsVmI20NJzhWX0ehzYparcRg0lFYbENnziE2LRq1VU3vZC+eMTfeKR++yVuv37xdOP2ksr1TXvaeqFoErxtT7S6U+bNedv8M/WjbvePuxXFvYSxM1MbR6DpNs7OJMHEoWrMah6eNwekBdAVa0vUpqPOz2H+mlr4ZL76JboYvDVB+qITSg8X0zvho7Wuh2ddIa28LzT1NNPkaF1+kb7yHC0kbFtrQfbZzfmnK+HzUku5xN56JbrrHu3CPdeIec+Ie68A95sA73oF3opOuyS7ckx66z3YxONHF0FQn/edcDF2446z0SfLXAKJ/93d/h1QqRaVSUVVVRWJiIoGBgZw/d3O2pR/++PsYi3LINKZ+JogeqNNhzt5O8NYXeP2lZ3n15Zd4481Xef6FZ3ji64/eAdFbgKgqR01Wzq1B9P4lS3jwnrv4ylfv4VtvzYNonl7Ac889yF33LuHB++/7o0G0vLKcbUEB6HJzKC8rRyKRUF5e/qVm+PvcQdQ77MbRPz81f+Pb/8Kb+MIg3DHQTu3JavqmfYvWxs8FRCedeCbaaOk5jmOgEe/E/GD53w9Eu+if7qPdZ2f9jo28vfod1gVuYO3W9WzZ7s/Wbf6kKTPRGfTodTri5XI2+K1EIRQQvC2QnVu3YM3VsXPrFrZt2kiMRMz6lSuIEgnJUWaydvkyhLtDEIeFssFvJblZKhRCAetXrkAuEhC4YzPbdm0lXZXMlsD1rN+8GrE8ghVr3kWsiESlSWeZ39vs3rUdSVgYm9esRqdSEiuVsOrdd4gSCQnbuYPtmzdjzc0hdOc2tm1eR3KsnPV+SxGHB6NKTWDr+lWEB21DJghlvd9StJlpJCjkrF+5gni5jJ1bt7B7+zYsuhxCd2xn/coVxEol+K9dg3R3MKasTNYte4ddAZuRSyJYt24F0bES6g/X8fvf/39854ff5ty3p+if6Z3vk9M9DJ7vo3+ml/7pHvqne+d1pmdeF/an5/f7Znrom+5h6Hw/Z2eHmboyAcDwQD8WXQ7BAf4EbFhPlEiI3ztvEyUSkpulYoPfSgShwYSF7sTP7x3UWWmIhLtZv24FUQoR69euIGiXP0aDBv8t69m9I3DxGcVKpSRGKVi/cgWS8DBEoaFsXOWHXp2FIkqE37plyKJF+G/fyK7dgeSa1GwOWE/gzi1IFJGsXr8CZUYKqpRkVr79LWSREYhCd7NxlR+qlBQig4PY4LeSaImY9WvWsH3nLnQGA2s3bGDTlq0oomNYvW4diugYsjVaVvitJiIiAnF4GOtWLEevziZKJGTT6tUkRikI2LCeXf5b0WdnUWgxEyWT4u+/Cf/ATWzYtJYN/ut4e9VbSBLE9E310TvVQ89M7xcGon3TPuoa9mLva70pfNOfMp4sOBPdqJ8GwJ+lt2rHQvsWcs0naeNp7GygxdlETGIURZUFOH12hqYGsFVYUecp0RWq2X+6lt7p+fONXBqk8mg5ZUfKGLjYj2/Gi2/Gh2/GOx9g/pwP36dYgv/Qnvn89Z6p6zrZfV2vRyqZ6MI77sI77qJnoove6W66p710T/XSO+VjcMLN0KSL/pluBs8P8E//cgdEbyV/DSAKUFFRgVwup7KyEqPRyM6dO8mz5t9U5gc//gBjUQ7K2wDR+jo9ZvWO6yD6DK++/BIvvfwCT3z9UR597CFWrlqGXCG5A6KfAaIhoX8A0QfunQfRt958nET5Gmx6IS+88BXuuf/TQfRWU/P/5//8ExHCCMJFYRSXFKNRawgJCbmtVK9fpHz+IDrUTcfgvJOAd9zN0IX+xe0bQdQ5aKeuYe/i/o0g9yeD6OQ8iLpGm+gYaqRjsAn32fZbhm/66wdRFz0TPjr6nKwOWMuL33qJd9cuZfm6laxY68fKtX6kq5RkqpQoMzNJjovnm88+x67A7QRt28FLzz2PKj2DXYHb+OazzyEKj+Dt199k9bIV6LLVvPPGm/gtXYY4IpI3X3kVqUBItFTOM19/kl3bthG8axtL330ToSAMf/+NPPvs14mMCOHdd99kxfJ30GpVvPrqi7z52ivIhGJeffElwoNDiI+K4fmnnyV4+06Cd+zkjVdeRZmaTljQTl587mkidgexce0qNq9fg1wiYMU7b7H83bdQSAS8/MI3iNgdsngtO/wD2BkQyPNPP0tSXDyC0DCeeORRIkJC2bJuPSvefQu1Mo2l33qDl7/5DSTiSNau8yMsIoTDRw8CMD49xtHGI9Qe3Uvtkb3UHt3LvmO17D1Sw97Dn6FHaqiqr2D/8X3UHKqivuEAzc4m/uu//pOD+w9gzNHhv3ETLzzzLJG7Q/nWa6+zYfUacrKyeevV11n5zjvIhRF88+knEewOIk4u5fknnyB05zY2r13FWy9/E50qk4CN63np+ecQRUSyZsVK/DdtRiGW8uYrr7LObzVykZiXn/8msXIFUXIJzz33FLt2BrBl83peevE5VKo0AgI28fJLzyMWRbD03bfYvH4t2RmZvPT8C6xcugxhWDhrV65CGB6BKCKCZ574OjsCAgnYEsDrr7yFWpXDhrWbeeEbLyGMkPDW6++wdtUGspQaXnnxdVYtX41cLObl519AIhCSGBPL808/y86AQLZt3cralauIksgoKShELpOwavVyVq9ZwfKV77J01bu88PpzCGIEDJ0foneqB++U75bhmz4PEO2d8lJ5pJwTjqO09TTT6mv6k7XZc+ZjeqtyLd7GW5b9qLZ4G2/5/abu04sanSmnyXWaFscZYhKiyC+14upx0DvqxVSiJ8ucTm6hmoONdfTNzMPlyMVBKo6UUXa4lP6LfXRPddM91Y17qpuu6W7c0914p269ZvWj6pny4L7+/ZtB1I1vwo1v3E3PuJueCTc9Uwsg2kPPpI/BCQ9Dk130z3gYPD94B0Q/Qf5aQPTq1atERERgMBgoLi5GKpUiiBTzk5/8dLHMBz/8LvpCzWeDaJGGgwf0WG8A0Vdefonnn3+Grz78AA89/AAr/JYiv2MRXbwutV5DllZNdo4KzUdANMh/FfcvWcL9HwHRfIOIF55/gHsfuOuPtoi2tbcRsG0ryRlJVFVXER0dTVpaGv/3//7fv2S3+5h8ISDaOeRg5NIgx9oPY600Ud9YR+eQ46awJa2+JqqPVSzu37hW9M+xiPomO3GPteAea6NrtI3uMTs9U/89QbR3ood2n53VAWt56e2XeXvNuyxbu4KVa/1Ys2EtwWGhyBRy5HIFgQHb8Fu5itDdYQT6b2PZuysQRorYtHEza1atJTJcyJpVa1m3ZgOCCCF+K1axdbM/EWECVixbya4dQezaEcTSd5axOzgU/02b2LR6DdLISNat9GPV0qWIw8PZsGo1m9euQxQaxrqVfgQGBLJz+078Vqxi5/YgdoeEsnK5HyHBuwnaGczKFX5EhgsIDAjAb+VyQkNCWLl8Gbt27EAQGc7Sd95h65bNhIeFsnzpUkKCQwgNCWPlilUE79rNtoDtLF+6goiwSPy3BrLs3eWEh0awaeNm/Nb4IRILWbFqJavXryE8Mpx1G9axK3gXRrORn/z0p5SWlRK4M4D1W9bht24lazetYev2LWzdvoUt2zbflq5Ys5yN/hsI2OlPSmYKH3zwAYWFxUhEMtasXsfqVWsIDQnDb4UfGzdsQhAhZNm7y9myYTOC3SGsWbacoMBAQnfsZP1KPyKDQwjYsIHNa9aiEAjZsm4D69duIDQkjNV+axBECAnaGczypSvYsW0nu4NDWb50BbuDdrMrcBtrli0nIiiYwE2bWb10GXKhkMBNm9m4ejWisDA2rlnDpg0biYwQ4LdiFf5bAwkJ2s2aVWsRCSX4bw1k+dKVhO0OZ8uGLax61w9BSCSb12xig996RKFCNvhtIGCjP/JIGSvfXsHOgJ2E7g5j5fJVBO0KIXhXCCuX+xEeGsGGdRtZu3odgggh0fJogoN24ee3bB5G167knZVv8+zLTxEmD2Vgup++6V48k18MiPZOeRcD2jd7ziymaf1TdcHj/kb9Y8re7nddwx10n3XhGu4gQR1Li7uRjq42UjOTsBaZ6OpxMDDRS8neQvQFaizleo601DN4rofeSQ8jFwcWQbTvYh/dM166Z7y4z/1BPwlE+6Z9N6lnupuuafe8I9SU+wYI7abnuvaOd9M70X0dRH0fAdHuOyD6GfLXAqK/+93v0Gg0REZGUlFRgVqjxj8wkOMnTiyW+cGPf4CxKBelIQ2VOROVOWPeY96UQnpuKinaFKJV0RgKtRzeryUvexvBW1/ilRcf59VXX+SZZ5/k4Uce5JFHv8Lyle8ilQnRGf48EF347Eb9skHzdlWZo0SZo0SlU5Gdm01WTjZZOVmoDWqUaiWB27cQtnsDIdvXcO+SJdx37z089MhdfOvNx4iVrcRmErBs6VM8+JV7uO++u3n26Sd45pknefTxx7jvK/ezI2Ib2RbVxyyiv/3tb4mKUhAcGkRhWQEGo4HgkGD6+vr+0t3uY/IFTM13Y+9v5ezsMHsOlSJMiKBkfyFtPc2LmUN6p7wcaj6Ardpy0w/N5wWiPdNOvBOO+e0p1y2dlf76QbSL3gkf9h47glgREfIIFElRRCXGEJsUT0xiLAKJmLCIcCIEAiIFEqTSKMRiOZECCRJpFAKBBJFIhkgsI1IgQSaLQSxRLB6XyaIQCKQIhVLEEgUREWKk0iiEQglisQSJWEJkuACpRIZULEMYKUIskiKTyBFECBEKREhlUQiEUiRSBWKJnIgIEUKRbLEtMnnM9c/lKKKiEYklRERGIhJLiBQIEYrESKSy63/liMVShEIJUlkUUqkCoVCGXB6DQCBBIJAgkSqIFIgRS+WIohRESqWEi0UIJBKEUgkCsQSRREpYeAQSqYyU1FQyVZmkZaSSnplGWmbq4naGMn1R0zPTFnVhP0OZTnJqEsqszMVjCUnxyBRyhEIJu0MjEEvkyGTRRAokCIVSpLJoRNevXySWES4QIJJKEUqlhEVGIlUoEEtlRIpEiCTzxyOFYiQyxeKzEQjnr1UolCKTRSEUyZBIFEglivn7L5UjFAgRCUTIZYr55yCWIZfJEQlFSMQyFPIYwsOFiMQyoqJiiRRIiIwUIxTJCA0VIJfHIBTJ5p+1SIwgUoDk+jMXCUXIpDIUcgVCgRCJWIJMKkcglCASy5FIFIhEMiTSaIQiKSKxApFYRkSkmPDwSBRyGckp8cQlRBMbH0VUvJztYdtIUCUwMDNAz5QP7xcEoguf1Z6sxtHfxuD5vo8Ftf9j9OMWQ8+i9kx9VtlbT81/Uh0LbU3SxtPgOMnIxAC+fjf9Iz76z/roH++hf9zHwJSPwXO9+Mbd+Mbnx5iRS4M3gah72kPXtAfXjAfXuXm9fYtoN+5pN+7pG0D0euao3kkPfRN/0JtB1HsDiHoZPD90B0Q/Qf5aQBSgu7ub4OBgTCYTRcVFhISFEhMfx28+/BCAD374AfoCPUpDBlnmTFTmdDKMyfMgqk8hRZtEjCoKU6GWw/vV5GUFErL1FV566RFeee1FnnvuWb72+MM8+thDLF3+NjK5mFxjDln/C0H05lzzyusgqkaVo14E0R3bthARvIGwoHXcs2QJ9953L1997G7e+dZjRMuWYTML8N/8Gg8/fB9337eEZ599gmeeeYJHH3+E+x+6j8DQANJyUnB6nDc958nJSfz9/UlOTaKsqpSU1BRiYmK+dGsofEEg6hhoY+hCP5VHyonLiqbmeCX2vtabAjfvO1VDbrF2EdYWPvs0GLw9deGbmM9OtLCmyTPuwjvedYPeGhpvdGr4qH4URI+2HboJUj8JMD/tXJ+lfdM+Ogc6SFAmkKnJQGfUkWvQYzKb0Rv0yKPlyKLlxCbGExOfSExCEkKpBIlcgUgqI0IkRBYVg0QuRyiRIpbJEculSKMUyGOikCgkiOUSZFHRCCQCFLExiOUKhFIhYoUYiUKGSBKFRBqLWCpDFqVApohDLIlGplAgkokIEwgRyxRIo+RIo6SIpArE0mgkUfPnl0VFI5JFoYiJRxEbh1AqQyKPRiLrBoCEAAAgAElEQVRXIJErkEXFIJZLkcjlyGNikChkyKIVSKMUCCRCJAo58uhoBBIRErkMqUKGQCJEHhuFOFpCpERITHQMUqGAaKmE5OgEkhSxxEdHERMlJyU5EaVSiUarQaNRo83Rkq3ORqVSzm9nZ6FUKUlMSiQzMwOtVotanU1OTg4arYZMZSZ6g57s7CzUGjUqlYrElAQkCgGJqQkoYqIRy6SIZFJk0TFIFXIkcgWKmPlrFSsUyGJiiZRIkEZHI4mKRiSXIImKQiCVEiEWI4mKRiyXI4mSIY2SIo+RI5bJkchjEMqEyGIk1+uRI1PEIZErEEoiiYqNQaaIJkIgQhETi0QuQRYlRR4Vh0CsQCxTII+OQiQTIJIqkEfHz9/zaAUSuWz+WSiikShkSGRSomJjEculCCRComJikciliKUy5NHRRIoESOVSJAopkWIBUXGx169LjEguRxwlRx6rIDouisz0JIqL8jCac9HqNGhzssnSKCmsKMQ33kPPhOf61O6f8cL5CboAUwtjTs+kh84hB51DDrrPuhb/Z2/3fJ6xrvm0uxMd+KY68E056DrbjGu0mZ6pTnqm58cY38TtjU83jhML6+M7Btpx9Lct1pmsS+B050mGzw0wMNVH30QPPeMeeie98/du4jpILlgoJ+dTfO45VMqew2UMXuhfnFLvvkF9twnf3sk/TMl7J7sXXxhuAtgby0958Ex345nuwjfdRc9UF/3nfAyeG+Qf//lO+KZbyV8TiC7kG4+NiaV8TzkJyUms37yJ3v55S9n3f/R9DLcLonXZWLMCCQ14lZdffpRXX3uRp595iocefoBHH3uIVWtWIJOLb5ni8w6I3gCiIRsJD17HfXdfB9FH72bZu08Qq1hJgUVI4NY3eeSR+7n73ptB9N6v3Iv/7q2oLaqbUnz+5+//E6PRyK5dOzGaDdiK89gdtptTp059Wd3uJvkCQNSzaBEtP1hCZFwYxXUFtPe23PTWfbilHkuFcfHH4bMcCm4X3r4I/TQQvdHy+XnWueDh6ux3IIkTI1GIiYuPIz42gZSkVJKTk8k16MhUZxCfkkBUfALxySnoLSZMeTb0FgumPAvWgkJMeXnozRaMeRZMNhN6qxG9RY8xz4DJZsJckIfeqsNkM2PMs6C36jFYdVgKrOjNBVhsJRitFkx5Viy2EkzWYnJNRgx5egxWK5b8AqyFVgxWPQaLDaOlEIPVgiFPjzHPjMGShyW/CLMtH4PFijEvH73ZjMFixpJfMB+KymrBkm/DnG/BkGdEbzFgzjdhybdisJox5OViKbBitpmxFFrJK7Kht+nRm3IxGgwU5VkoshgpNNnIzsgkKTGW+OQ4lBoVtXX7aG5upqGhgdOnT3PmzBmam5s5efIkTU1NHD9+nMLCQvbu3btYrrm5mcbGRhoaGjh16hSNjY00NjbS2tLGnspSEtKiiE2JIik9GY1Bi7XQNn9tNhOWfNvifVlQvdmEJT8fozUPvdmI0WrFbLOhN5uwFhRitFox5hnQW3OwFlnQm80YrQUYrLmY83WY8y0YrVZM1iJMeXlYCs2Y8izozVbMtgL0ZgumfDMmmwlTXgFmWzGmvHyshXkY8nIwWm2Y8kqw5Odjzjdjzl/oGwWYbTZyTUZMeTYs+Tashbbrz8o835fMVvKK8rEUmDDmmbDkmzBajFjybBgtBixWK7lGHfHJMcQnxpCZGo8+N5voOAXxCbHEx8WQq9NSub8Kz0QPvikv3rGuzx1Eb8xWtACiC+GbHP1tdJ910Tft+0SHo1uec7Jr3tlxyoFvqg3fdCuOoaO0DxzDN2Wnb8ZF77SHnunbc4ZaqHthLHGPdtLW07wIoj2THpJzEjjlPL4YeeR2LMajl4coP1hCxeEyhi70/1GW5duxNH/a971TbjzTLtznOnGf68Qz1UX/jI+hmQH+8Z//4c/9SfkfKX9NIArzoZxCQ0Ox5edjMJsI2LkDba4OgB/97Y8wFOhR3QaIHqrLugFEH+PV11/ka48/xgMP3MPXHn+YVWtWIFWI0OrvgOhngmjIeu6/Zwn3338/X330blYs/TpxipXkW4TsDHybhx9+4GMges+D97A1ZAtqaxYOt2Px+f74x39DcHAIEqmY4tIisnVZBIcE87d/87dfVpe7Sb4QEO0YbGf08hD7T9eiNKez90QVbT3Ni57xvoluWryNi2tEb9sy8b8IRD1jXfRMeXD0thMmDWNbUCDhEeEIIoTsDglFLBYzcnaYY6eOkpCSREx8AtlaLRMzM8xeu8b5y5e5cHmW6QsXuDg3y+WrV7k4N8vce3NcmLvI+dkLXL56mUtXL3P+8gXm3ptj5uI5Ll+d5eq3r3BxboZzly9w+ep3OH/xChdnZ7l85QoXZ9/j4uz7XLoyx8Ur57l85SoXLs9x7vI5Ls5d4uLlq9c/v8qlq5e4dGWWS3PXOH9plouzs8xde5/LV69yaW6Oi7OzXJidY/bqNS5cnuPi3ByXrsxy7tIFZq/NMnttjstXLzP33hUuX5tl5tI5rrx/lfOzF7gwd5GLVy9zfvYCl+Yucu3aFa5emeXatWvUHagjLjWRZE0m5ftr+Onf/exT++zvf/97XC4X3/ve926rj3/72++hVKcTlxSDwarn/Ox5Ll+d4+r773H5yhUuzV1h7tp7XJq7yvlLs8xeu8aluTmmL1zgve9+lyvvvc/FuTlmr13l4uwsl+aucuW997lw+Txz713k0tVLXJy7cr3MZebeu8i5SzNcvnqFmQuXmbt2lQtzl7g4Nzv/vdkrXJidZe79K1x5/yqXr77Hlfe+y8XZK1y8cokr789x+co1Ls995/qxC1y6cokLs1e4fPV95t57j4tzs1yYvczlq1e59u1vc3Fujmvf/s789Vy5ysUrc1x6b5aLVy9z+cplZmcv8d7cLN+/9h4fXHufgR4fOq2aLFUG6swU4mNlBG7fikAYSXhICDlaNZUHqnBP9eCa8dA50Ynnj4zp+6eC6EKw9huzGd3uOXumuumZcuOb7MAz0YZnspnO0dM4h0/jnbTjnXDiGXfhm7x9i+3CzE/vlBfP2HxA+84hxyLYpegSOe06eQdE/wfLXxuI/uxnPyM8LIxMpZLyygrEchmbArby/R/+gL//x7/HWGS4LYvowX3zIBq+7XVeffVrvPzqCzz9zFM89fTjfOO5p/BbvRypTEiu8eOZle6A6M0gGhm6gQfvu4sHHnyArz56N8vffYIY2XLyTJEE71zGQw89wF333Ayi9z10H9vDA1EaMm6amq/du4/t23aQlZ1FUWkhkZII8mzWL7HH3SxfQGaleYvojQPvAoDeOEXVMdD+RwW0/98Ior7Jblo8TSQqE0hMSyArOwtNtgZVpgq9PpeLly9w4sxJFLFRqLKyKCjMp93eQXNrCw6nA0dHJ82tzXQ4nXQ457fbHW202Vtps7fS7minzd5Ga3sjna4uGpsbabM309nlxO5spq3djt3hpq3dSbu9g7Z2B61tHbTbXTg6OrE7W+hwumh3dNBmb6HdYaeltYPWNidt7R2021vnj9udtLTaabO30+F0ztfbbqe1vY3mlmbs9k7a7Q7a7Hbsjg5aWptpbW/G7nDQ2t5Ca3sLnS4Xre3NdDg76HJ30dTeTFOHnUZ7G6ebTuHsdNDW2obT2Up+gZVsjZpz58/R3NbK9MwMv/rVr/jFL35xk/7yl7/kl7/8Jf/wD/9AQ0MDU1NTi8c+WmZBf/3rXzN6doS0jBQylKkUl+Vhd7TicjtpbW+hrd1Bh9NJW3s7nS43re3ttLa30u7ooKllvv2Ojk7a7O04nB202x20trfT2dWNw9lOq72Rjk4HrW1OmluacbqcODrbaGo9hd3RQVu7nZbWVhxOJy1tLdgdnXR2emhqmX/mbe122trb6Ory0tLaRmt7E64u1/z9bXPi6uqm3dFCu6OVTlc3rW0dtLa3Xb//bTicTpydruv9xnW9f7TR6fHQ0tVBs6MVZ2cnbY2NdLe10t3iYKDLTfuZM6Qlp5Cfb6W6soT0zERiE6LJzlKSkZyMPkdDxf5KXNM9OM95sE+55qeLv0AQXZiF6Zn0LP6PLsTtvO3zLqwrn3TinbDjnWjDM9FO93jrPJyOOek+68Q3cXtQfeNSnoW2LowdC2voEzVxnOw4dgdE/wfLXxuI/ud//idWq5WQ3bspLC5Co89l3eaN1NbV8tOf/QR9fi4ZuWlkmTPJtmaSYUwh3ZhMWm4yydpEYrOiMRflcLBWhVnpT1jga7z22uO89MoLPPnU13n+hWd561uvsX7jGkSSyD/bIvrfVW8HRLdv20J40HpE4Rt5+MF7uf+B+3nokbtZsfRJYuUrsBrC2bThFR566D7ufeBunn76cZ55+gkee+JR7n3wHgJCt95kEf3Vr35FRFgk4WGRFBUXoc3VsCt0J+fOz3zJve4P8oWsEe0YaF+MH7ow+N44mC2AaM3xysWBeCGG6B0Qvble54CdFlcz0xenuHJ1jveuvsfc7BXm5ua4+t4V6o8eICkticqqPeypKMFmK6Cw2IYt34JBb6a0rACz2YTeoMeaZyZXn4PZoseaZ8RgMGC1mtlTmY/RYCG/II+SsjwMBh2WvByKS0rQqHMpLi7CarViMBgoLS2hsLCEvLx8Ssry0OboKCwsoKQ0D41Gi81WQH5+IXq9CZNJj9GkwWAwUb6ngsIiG3q9jorKIvILCtDmaCgoNGO1FFBQkE/5nnLMJgv5+VZKSvPJzTWQq9eSZzOhy9VTWGTBlm9Fr8+lvKIMvc2KqcBKSbmN9PQUkuMTKczTokxKYG/pHr579RodzS04HQ5m5+Y4d+4c09PTXLhwgZmZGQYHB5mcnGR8fJy6ujra2tq4ePEiMzMzXLhwgXPnznH+/HnOnz+/uH3lyhVcLhcF+QVkKtMoKjFQXGLFaNJRXGrDlleINc9CYZENo8lIfn4eZeWF5ObqKSkpIr/ATK7eRFV1+fVr0bOnohyrNQ+LVU9FZSFmixFdjpGCQitms4X8AgtVNQWYzWaKim0UFReTZ7VRUGDFmpeH0WihqCgfg1GPLa+AsvIiTCYL+fnzz8igN2GxmLHZCtDrLZSUFlBaVoA+10hRUSklJUWYTCbK9xRhs9lIz0inpDSf4uIScnNzKC4pwGLLw5hvw1JowWAwUl6UT0WBiXydgarSQiorSklOS+dE40k8fV2ocjOxux386Mc/ZLC3B7NeR2lNGa6pHlznvXROd+H5C4HojWPRjdu3dc6J+an5+VjE85na+mZc+Cad9E678Iw78Yw7/6h2fhT2FkB5oW1J2ngaOk/cAdH/wfLXBqIAV65cISg4mBx9LoVlpQgkIiJEEUzOTGErzyNdl4rSmIbKnI7KnEa6MZmUnESSNAnEZcdgKdZRv1eJMX0zu/1f4bXXHuflV1/g4Ue+yiOPPsQL33yWNev8EEsF/y1A9Iuwut4IokqdkqxPsIiG7lqHMGwjX33wXu69916+8vA9+C1/mriolZhyQ1n69hM89NDdPPLYQ7zx+ku89tqLfOP5Z3jkyUfYunsLKmMmvkEfAJ2dnWzZtJXUlDRKy0qJS4j5/9k77zDJqjL/+3N3dVdXZAm7C+uKqOsqIhiIklQQZmBS51A5V3VX6pxDVeecc6jQXTlX59zTM0QRBEkSBEVcSSsygATh8/ujp5sZmHEHBWHdeZ/n+/S9t849dc/pc8/91HvPew4ShZhDLx36kFvc2/aBeEQn4m9HyG91bEeusRxZ2Zz0fssjugVdW8D35wT4/DWBaHQ1hGdqEk/Uw4/vvZO7f3IXP7n7Hu75yb3cd9993HvfPXT2dSKRiRgd6ycQchII+HF7x7E7B3G53IzZunB7nEy6HIzbBvF4J/D6HExMjuLz+XC57IzZOvD7wzgmRhi1dRAIenBO9uNw2nC5XDicI0xOOnG5Jhke6WXS5cTr8TA82oHb48bhHMU5MYjX62V8fAybbWzTazZhxzHRh8fjYdw2yoRrFLfXzrijG4/Hjc8/ybi9B583gD/gYnRsCLfbjd0xgt05wODgIJ3dLbh94/j9AUbGuph0jePzeRi3jzDpcWOfGGfE1olzchz3pAufr4cGSyk1pRW88vLLzMenuPXgQd566y3+8Ic/HKXXXnuNP/zhD/z2t79lYGCAg8dJd6QADh48iE6nx+G0E59x4PPbcHtGGRnrxOXy4XI7cDhH8HpdOJ1jjI734PG4sdmHmXQP4fP5GR7pxOEcweVyMjLWh9frwu0dZ8zWSTDkxe32MjbeTTgcwe4Yxj7RjsczyYRriLHxzTwczhEmXQ4mXROM24Zwuydwu7yMjHUTCHhxTowx7ujG540y6bJht48Tjcxgdw5hc/QTDAZwOu243Hb8AS/jth5GRgdpbWtmeLQDr9fLxOQYzokhAkE/TtcEY45BPC4XLucIPlcfIZ8bl2eIQVsfIo2aztFefFM+BFoR3ukgD//8UZbmZynMzcHaaCG8FiNyIEpoNXDCr7NPVFv3zJGv5rd+6P5JqyqthYis+g9DqP+I+YgD24tkxNYDxPYHiL2HshwLRKOroaM8oh/EGNEPSuG1AKF1H4ENL4ENL6E1P1MbUWb3T58MVjqOfRRB9KWXXkIoEpKUmkKV1YpILuWCiy4grySPwqoCVCYFWYVqVLkydEVK1AVyZCYxMoMYYVYmBeVG2pvU5Cq/y46rvsAXv7gJop855R/5u7/7f3zms//AN7/9DZKS92EwZ5NlOhryNEYNKr1qe2qjI6c5+mvRFmyrDWo0Js3mzAEmPVpjNvpcPdpszTaI7t5xCZ/824/x8b/5OH//6Y9z4TfOIDP1QgrMO7ngvNP51Kc+zj+d/hnOO+/LnPP5s/mXs87krC/9G9fu/QG6Ai2uwCQvvPACSqWSHdfvpKiwmPyCAq7f+UP6h/o+7OZ2lH0wHtHZSWYOxGkfbSHPYsZcaWDA1bvd0W4FEGxNaH9kNOuHCZwfNRANLvkIznkJzQb50T138NDPHuLhnz3CT++5j0ceeYSfP/EYXX2dyJVinJP9uH39LC7NMTDUgGOih/n5GQZH6giEHMzOhensriUW8xCfctHeWUMsFiIUdtE7UMnC3BJj4z0MDFtYXZ1lzNbC5OQ4yyuzdHZb8PoczM/H6BtoZGrah8czSXtnOTMzEdzuYXr6a5mfn2V0rJ+h4W5W15YZGx9kzN7M3FycwaF2PL4hFpdDdPWVEQp7CEcm6OmzEotGCATt9PQ2MzMTw2bvx+7sZGLCjrW2EK9viOXlJQaG67E7+llenmVoqJNw0E806qW9p5xw3E18Jo431kJD26Z39dVXf8/c7DQ/uuP2Y7bVLbB86aWXCAQC3H333SfUxm+77XaMxlxisTDT8yN4fAPMznvoHbAQj04RCDrp6atneWWaSfcw3X3VzM/HGB3rxD7RwdraCl291bi9QywsxhkYaiEYchGJOejoriAW8+LzehgYrmFxcR6fz87QmIXFxWlG7Y3Ynf3Mz83R3VOPz2dnZXWOru56whEP01NT9A9ZmV+I4POP09VbwcL8Gm7PMEPDXayurOOc6Gfc0cXy8gyDg514vKPMz8fo6a/G47UxNNxNV28lM7MxgiEb3b1WlpZm8flc9PQ2MDsTYWKiH5uznsXlOK5gP/32DoRqBQPOQWJzIRR6OdNrczz59K9YXlygMD+X2uYaYiuxzdWOlv3EPwAQ3Rp7+U4Q/ZO0FnwHgL49/Vt07cjPD08P92dc+9ba8x+kR/QvAqL7vQTXfCdB9H+wjyKIArjcLq7fuYOSinKKy0v57jWXc+2N15IkSkSoycRYkoUmX44yT4oyT4rcJEFmkCDMyiS3VE9LvYIc+WXccOU5fPGLm6/mTz/jND716U/wj6ccBtGUfejNWeiM2m3Y3AI0ZbZy01to0r7tOTRpPxQdDyT/HG3BtkqvQmPc9P7qjNloDFlk52SjyVLz/e9dwc5rL2L3zkv4h0/8DX/3ib/jHz6zGTWfkXIB+aadfOO80/n0p/+G0844hW9/63wuvuhC/vO8r3DG587gqh1XIskSkSFLR6fXcs0115CanIbVYkWXpWPX3pv41VMfrfvyAwlWcs9srvHcZWunsDYPY3k2/ZM9J0H0vXpE10L4Z70s7J/npw/ey4MPPchjj/6chx96hIceeojHHn+U4fEhtFlyBocaGRquY2Fhir4BKwNDtczNTdHVW4Ld0cPCQpTG5mJCYSeRqJ2mphJmZ6N4vCO0dpqZm5ljbLyd/qFyFhdj9PRVMTzcxdxchK7ucsbGe4jFvDS3FhEM2gmHvNQ3mYnFvXi9Q7R1FDM9FWVkuJOOTgsL89MMD3UxMGRhYSFGR2c1NnsbU9MumtsM+P12QmE7La0FzEzF8PqGaWoqZ3Y2xthYJ13dlQQDHppaiunrt7IwP0NffzVDw61MxQN0dVjxTtiZmQ5QYVHiC9rwhb0MTBZRUWugylrOG394g+Xlee64/bZjttXXX3+dt956i0OHDhEKhbj33ntPqI3fesstFOYVMT0dwemuxeXpJj41QUOTCffkJLG4i8amAqamffj8I7R2FLKwEGdktInu3nLWVpfp6CpmZLSZ2ZkwrW3lBAIOpmYmaWrJJxSaJBTy0dZZwPRUFIejn/auHBYXpxgcrqKvr57FhXm6eyw4nANMT4dobavA7R5lbmaats48QmHnZp22GpmfXWJiopee3lrm5+YYHmmlr7+GhYU4be01jIx2MD8foaHZhMczgmtylJa2HAKBSSJROx1dZSzMRfG6HDQ1FrEwH2N0vIWeoSIWl6cYttXT1VeDXCbBPTnG+uIs2Wo503NTPPnrJ1lZWaKgII+GjkaiqzGm1iJMLwWIv99A9L6DaOgwZPreBtDVyBEKnQTRkyD6J9lHFUQf//nPuWHnDoRSCdb6WlIyk7ngkgu46OrvsCvtRtS5CrQFCpS5UhS5kk0QNUoQ6DIwF+torpGRI7/0MIieyjlf/HfOOON0TjnlU5x2+ilHgajWoEFjelsqvWobRDVGzduew8P7f2kdD0T/nDzVBvU2iKoNKrRGLVpDFhrD5qt7dZaaa66+nBu+/20S91zBaZ/9FJ855TN85p/+lvO/diqZyd+gwLyTb5x3Gp/+9N/wT6efwgUXfJWLL/4m51/4dc749zO58oYrUJrkXH39VVz5vSu4/PLLMRnMVJRXsm/fXqqt1R92M3uXfSAeUe+si+mNGE0D9RTW5mEoy6LH0bk9b95JED0xTW9Emdk/xbPPPwtsevDefPMt3nzzTd58800A5hfnaGyxcuedqywsunj0kYeIRIeIxUb52c8ewOVpZX09zn0/vROHo5277rqFe+65Bbu9nXvvuZObb55n0l3Pgw88yNSUk2i8n0cfeZBIdJSFhRAPP3w/gUAv62szPHD/Txiz1XHXXQe4444DDAxW8JO7b+P225exO5p45OGHWFgIEwqO8fDDDzI95SUYGuBnP7sfn3+A5ZUg99//I5yTtdxxxzo//entuD0d3HvP3dx8yyJ2Wyc/vffHTE+5mJzs5L57f4LH00U0NsqDDzyAP9BLLObkZw/dh9c9yM0H1rj//rtoazdz8MAC99x1GytLPQQcPTTm5/LUIw8z7XRw6/61Y7bVN954g7feeosXX3yRaDTKfffdd0Jt/LZbbiFHb2RjfZXFlVHW1kM88OCdOJz13HHbLdx9981Murr56U/v5ODBOSbd7Tz66EOEwgP4/J088vBDOBwNTE9vlmXC2cmBAwvcd98dTLraueeeO/jxj2/F5W7lgfvuY2NjBq+vkUcefoBAqIdobJRHHn4Ir7eftdVpHnzwXiYmutjYmOen997FhLuBu+++mf0bU9gcFh568GdsbEwTDo/w6CMPMzfrJRq18egjD+J09jA/H+D+++/C4azj4IE57vnJ7dgdNdx9923c8aNV3J5OHrj/J9y8fxmHrZ2HHryP2YVJgrFuHn30Ieanx1mamqRMqWbR6+beg7dQqcvi548+Cmw+3IrKimgb7iK8f4rYeoTp5f+NIBohuho7rOhJED0Jon+yfVRBFMBireGHO3ZQVllJTn4u3/vh97nyuqu4Zsc1iLWZaPMVaPNkKHLEyExCZCYxAl0apiINtVYt0ozvcvWl5/KlL57OF7/4OU4/41Q+9Y+f5NOn/APf/M4FJKUmoM/JRqNXozG8LZVehSJLcdhb+OGD6B/zav45IKrMVqLMVqI2qNGaNKgNm59lmbWodHKuueZyrvvBJSTt+z5nn3kqp//TKZx2+if52lfPYO+eC8nS3sQ3zj+bv//7j/OJv/9bvnHBV7nssos47/yvctbnz2Lnvh0kpO3jyh9cwY4bbyApKYnSkjJMRhPXXXctt99+7DeEH6Z9IGNE3TMTLNw6u716Uk6VkVH/0EkQfY+Kr4eZ3T/N7148/soHUzNx6hoqcbk7KKvIQKtOJzc/AYNpN0p5CoUlCZhMaWjUCRhNiaiUe1GrbyI/PwO1KpVsXTLFZbvRKGTos5Mx5lyPTptCtuFG9NmZaDQJFBYnk6VLRqNOJq8gEZ1uHwa9CFPuHhTyfeiy9lJYlIZKnolKtQ9zTioqRQoGgwij+Sbksn2YzCmY8xJRqW6ksHQXWm0yKtUu9KYbydJIMBpTyM0TIhHtI1ufTF5+EiplBlnZe9Fl3YhKIcBo3o3JlI5clkBJiRxTthSNMpFc806yZDdRopFia06lR5/BgFRNyJBDuKCE21fWjll3WyB66NAhYrEY99xzzwm18QMb+8lSqyjIy2bUkUdRcRoq9Q0YzTvRqaUYDanosneh0SSQlZ2A0XwTMmkCeXmp5OTdhFqZTrZhB+acZBTyfeQXpGMyZaLXJ2DO3Ud2VjoadSZG8w3os2TkmEUUlOxEodiHMfcGcnPT0KnF6A0J6HRJaDXJGIzJaDRJGPUKCot3o9HsQa25CXPeTubBjNIAACAASURBVFRSBQZjAkZjEiqFCIMhGZM5Ea06GbM5k5ycNLKz0jHn7SIrazOfkvIE1KoUlMod5OQloFOnYFQLMWYnIJcmkF+cQW7RDehVKVTnJtKZJ6NFomLcYMSZW0y9QsevnvgFAM8++yxl1gpax3oJbkwR3h9maiX4vwBEg4cDlI4E0TjRlfg7QNR7EkRPguh7so8yiN51111c98MbUCjVWKx1qNQa0gSZJKQloDYq0JhlaHLEKMxCZKZM5CYBQm0K2XkKSqtMJKfu4MILvsi5nz+TL517Fqf+06f4x1M/zZlnn8H53/o6u5N2ozNqUWerjpIqW4niMKRtegzVf3Xa8voeWUaVUYnWpEZrUqPUSbn6msu45upLSdhzA2efeSr/8tlPc8apn+LcL/0Ll19xASqNgG9f9DU+8cmP84lPfpzzvv4Vvn7+V/nyf5zLv33ubK6//oeIxWLS0tOQSCSYzWbKy8tJSEhAp9Px+1d+/2E3sXfZBzZGdGp/lLaRZvKtOZgrDdse0eCij/ByYHv6pq3Od6tD/WMPmWMB4rFWLjnWuVtTSG3peOcfK7+th1lsLczMgTju6YltEN0qzwehmYNxZtaneOF3Lxyzrt98803sTht1DVWEw3a6uirY2Fiis7OC0dFm1tYWaWkpwOMZZm4+hNViZHrKRzQygbXaxNxshFDARltrPuvrK4wMtaDX7aW0KIueHgsD/S2srs3Q0lyEyzXEwmKMlpYigiEbPp+dykoti0txXK5BmpoKWV9fYnysC5VyH7U1xQwNtdPdXc3GgSV6eqw4nd3MzQewWnVMTXmJT3mwWPREwl683mFqa/OZng7hmhwgOysFrVpIU1MxnZ0VLC3O0NZawthoJ6urczQ2FONxjTE7G6SyQkUk7GAq5GJyoARbfTEVe3cxppAxotVw5/r6MevvD2/8YRtE49HoCYNoJBrEaNaxsraAx9eF1zvA7IyP5vocvC4boYCNmkoDS8txJif7aWkpYGlphsHBBtrai1henqGhIZfR0RZW12apseYgzLyRnu5a2tqKWViMEgxN0tiQw/x8HNt4N+0dhWwcWGJgwMLgQAMrK/PU1xfgcPaxtj5PjTWH9NTrGRrqoqOjiOkZH4HgOPUNJtbXVhgfb6ettYzl5XkGBpvo66th48ASnR3VjI+2MTcborkpB1HmDXS2V9PRls/CfIRI2EF9rZGlpTgTjkEa6vNYWZujb7CO/sEq1ldnGeuoxNlqoTw1jbq0FLpUKmoUMn75xOMAPPvcMxRbi2kf7WL6wBQzqyFmFn3E30P0+onC3OYPuAiN/XW4pyf+PBBd3QpW2lqZLURkJXwYQrdezW8FL514f3S8PmprXtH3GqwUXd1c4tPaWUVtt4XZg1PH/u614Pb1bo13jaxuTScVJrwcJL4eJboaJrIcIroS3l7RKb4WJb4aObwdIboSJrwU2FztaSNM8DCI+tbcJ4OVTsA+yiD6yiuvoNcbSE/PpLyiCr3BxE179/D9HT9ArBagMUnR5spQmETITSKkBgFCTSrKLCH1zZVYaku59JIL+OI5/8rnzj6dUz779+xO3MVlV13K+d/6OnuSdqPRq1FlKY+SMkuJIkuBIkuxDWp/bUC65fXd8vwq9SoUBiUaoxqtQYNCLeOqay7ne9+7goTdN/Kvp3+WfzvzNM79t3/lC+eexa7d19PR2cQll36TT3/mk/zdJz7Ol770Bc4559/5whc+z9lnncV1111Heno6O3bsIC0tjYKCAoqKiti1axfBYPDDbl7HtPcdRMNzIVxTb8/fN70RY3ojdlSHG1sL456eoK7HSmQlSGDBS2DBS2jJv739TgUXfSesY537ThA90by2oHVrP7YWxhm10W3v2J6KaqsM7zeITm1Emd2Y5rcv/Pdx6zs+HaPQmIWjqYGe0lKmxsfxdXUyWF3F/mCQsVork62trLg9DFaW4+7oID48Ql9pCTNj4yw6nAxVVjLncBDp76fJoKclx4y9oZ7eijJWvF5s9XU4mpvZHwzSV17GRFsbcw4HveWlhIeGiA4N0lteyozNRmRggHp9Fl2lJXg62hmorGR/MIizuZHxhgYWJiYZr6vF1dHBwsQkg1UV+Hp6mB4fp7OogKmxMaJDg9TotFSqlIzWWukoLmLGZsNWX8dobS1rPj8jlmpstVaWJp0MWyrw9nYy6xjGWV/JUL6J2sRdjIhEjKlU/Ght9Zh199prr/HWW2/x8ksvMxOf4u67TixY6eDGOmUFBtZm4tjamxlpqGfZ7WGkshJfZyczY+P0lhQTGRwiPjJCV3ER8bEx/D1ddBYVsTAxyUiNBVtDA0suF/aGeoolQmwN9QxWVRAaHGDe4aCzuJBAXx8zY6P0lpWyMOki0NPNsNXCwsQkY3U1DFosrPkDjFgtFIqEuNvbGa+rJTw4xKzNRl9ZGVPjY0yNjtBdUszCxAS+rk76KspZ9nhwNtUzbKlgwWFjxFJBmVSArc7CeE0V4f4eliYcDFaWMDU2QnR0gO6KQqadNry97YzUW1hyT+C0VGEvLaU+PYPOTBEDYil9cgVL4+O88ftXef755yitLqBtpI3pm6eIboQIrHoOL4350QbRY92Xf+y73/lD+U8BUbFe8J7mEY2sBJm/ZWYbRGcOxP8IiPqPUJDYWojYWoTYWpTYWpTZgzNM759iZv80M/unmF6PM7cxw9yBme1j8wdnmT8wy/R6nPh6hOCqn+jBEKGb/QQ3fCc9oidgH2UQBfD7fSQlJVNUXEpZWSXf/+F1nPfN8xBrhGTnqVAZRSiMImRGMZIsIRJNJiJFGtW1ZVhrK/jWN7/OueeczT+fcSpnnHkqMpWES664eNMjmrgLjV6NQis/SnKtHJlWhkwrQ66TbwPbX5PkuqPLKM9SIstSocxSo8pWI1PKuPqaK7n44m/zvauv5N/P+hf++bRT+fK5n+fcL/47Scl76Rvo4jsXXcj/+5uP8bGPfYzTTj+Nsz93NqedfhpnnHkmu/bsYl/iXr7+ja+TIUjHUlONVqchJTWF55577sNuWse0D8QjOhl3vGteuiOnZoqvR3BPT1DbbWHA1UuPo5NeZxf9kz30OrtOWN32jnfpeGn7JrqPUo+j85jnv1M9jk76Jrq38xh099Fla6fH0XnUQ+mD8IhudeYv/O63x63vqdk4lrxc5nuHiLV1szQ4RrC+hXBLJxsON+HmDpYGx5jtHsBjqWe6s5/1EQfuqjpWh2z4aprw1TRxwO5ipqOPaFMHB2xuAvUthJra2XBsbs909RNu6cBX28zykI3VETuT1XXMdA/grWki2NjGQaeX2Z4BIs2drAzZCNS1EGnp5KDTTaSlk3h7L9MdfXitjSwNjbNhm8Rb28RC/wiB+tbDeY8z3zdMtLWbm51ePNYGQo1tHHC4CTV3EGntYrqrj1BtMyud/dw65sBXVcNy/yCxpiZCVRbm6xoI5+RzW1MHc6XV3L60csy6e+uttwA49OIhQv4A953gykq3bWxQZdSzEgwR7e4j0t5DrK2bQE0Tc92DLPaP4Lc2MtsziK+2iWBDGxv2SeLtPfjrW4m39RA4/D/ab5vEW9PE8tA48fZeAvUtLA/bWBwc2zw+PI7H2nA4Dzex9m6mOnqZ6xvCY6kn3t7D6qgDX20za6MOYu09+GqbWBmxszbqwFu7+b/11Tbjr2/hoNNDpLWTaFsXM90DBOqamO7o4qDNid9ax/rwGDMdXYQbmlgZHGF1aJRwfROz3T0EmprwNzZy0O3B39JCtKuLhb5+wrX1LLZ04copZqq8lo26NkJZeSx19PL7373I888/T1lZIa3D7YRumcJzSwTHAT+B9fd3vfmTIPreQXTzbVGAscAo48ExxgKjjHiHmIw4GPePMuodZsw3wrh/FGfYzqh3GFtgDJt/jPHAKKFlP6HDIBo86DsJoidoH3UQfeqpp7juh9eRkpZOVbUViVxOujgdc5ERtVGGTJeB3CBFopMgVgmR66QIZRkUFOdRUJjL1Vd/l3//3Nmcfda/cv4FX+O7V1/Gld+/ggsvuoAdu29Ana1CrpEdJZlGhlQjRaqRvg1qf2WSaWVI1BIkaskmkOoUyLRKFDo1iiwNYoWUq793Nd/81je56qqruOKyy/jaf/wH537hHL78lS+xL3Ev1dYqklOTOf8b53P+N87nc58/h1M+eyqfOeVUvnreechVcgoK80hNTyFLr6O0vIRrf/gD6hrqPuxmdVz7QDyi7umJ7c7wyFfgwUUf/nkPkZUgvjk3fRPd20vw/U8e0Xd6NI/n1Xw/PKrHynPrGsPLm0vyOSLjhJcD28sHfhCv6E8EROcWZzHl6BkbHmB4oBeve5KKkkJGhgZY379GfW01AZ+bgb4eKksLCYeD+ANeqipKiUSC1FgrqbFWsby6TGdHK93d7YSCAcpLChgZ7OfAgQ1qqspx2sfo6WqnqqyYUMBPJBykvCifcNBPnbWK+ppqlpYWcDrGaaqrYXiwn7LCPAb7e1hYmKervQWnbZyB3m6slaXE41HCoQDV5SX4fR6qyksoKchlaXGB4YF++ro78Ps8FOfn0NJQx/r6Gt0drUw4xhno66HRWo1jdJjZmTg1VaX4/C5q6sqprS2j3lpGbUkur778EguhIHfffusfbbOHDh0iHArx4zvv5Mknn+SXv/wlv/zlL/nFL37BE088wRNPPMEvfvELnn76aQBuvuUgeflmNjb2M9zTjX1okNGublrLyom6PQQmJ6nOzSUWDFJZWoSlsoyF+TkG+3uor6mmt6sDa0Up9vFRpuIxGmqq8XomaaizYq0oZWV5Edekk6a6GoIBL2XFBbQ11XPw4AH6ezqxjY0Q8HmxVJQyPNjHyvIS1soyQgEfnW0tWCvLmIrH8Ps8NNXXMDc7TXVFKS2NtexfX6Onq52+7g4mnHbqLBXYhgdZXJijrrIUr8tJX2cr1rIi5mamiIQC1JSX4HE5KS3KpanewtzCLP39nfT2d+Kwj1FRmk9PewuKjFQWZ6b4+UMPYjHpefLxxwF45pmnKSktoqO/g+n9M0T3RwmtBol8ABPanwTR9wai0xsxRv3D7BPv5YdJ13Fj+k52pd9IujKVPZm7uCltc3+vYDcCTQY3pu5gV/qN3JD4QxIle3FExokdiOBf9RC5JUj4YOAkiJ6AfdRBFN6is6sTuVJBeUUVeYUFmAvMpAiSkWiEqI1S5NkSJBoJIqUIgVxAqjCVpNREdu25iauuupKzzjqbr331a1x66cV859JvcdlVl26DqEwtfZekhwFNopYcBaR/TZJqpIhVYsQqMVKNBKlGhlStRKZRIdeqEcokXP2D73PxpZdw8SWXcMkll/Dtb3+bc845hy9/5Stcv3MHu/buQSASIVcpMeaY+e5VV/EPn/5HTj3tDL575ZVkG7Mx5Rox5hgorSjBnGtCJBVy54/v/LAb1XHt/feIzoVwTTuPCkza6pi3gDK+HsEzM0n/ZA/TG7F3jcU80QfCsXSsDnjzV/+7x4ieqLbKsRVQEFz0YQuNbpfngxoneiIgOr84hy5bQ1NjA9bqKooKCyguLKC9tQWPx01dbQ21NVZyTSZKiosYHR9jdHyUwqICsg3Z6A166uprUWlUGM1GLDUWzDkmigrzaWqox+/3UV1ZiaWqCrPRQHVlBYMD/QwPDVJeWkJBXi5GfTY1lmpcLhed7W1UV1aQl2OmMD+PkqJC5DIpLY2NWKoq0aiVlBQVYrONMTjQT1lJMdWVlRj12ZQUFeJyTdLX24O1ugqzyUBJUSF1NdbtstRYLeSYjFRXVmI26pHLJVjrLeQUmpFnKyivq8CQq6eyupQXXniBjrZmBgf7/2ibPXToEJFwhFAwSFVVFdXV1VgsFqqqqqisrMRqtWKxWOjs7OSN19/g1h/dgbm8kEg8RlNbMxarBUN2NpaKSkaHBhkdGSYvP5fcHDM5RgNWSzVOp52ujnbKSooxGfSUFBVSXFSAUi6jxlJNVWUFWrWKyvIynA4HQ4P9VFdWUFZaQn5uDpXlZfh8XlqaGqmtsVJUUEB5aQmdHe0EA35qLNUU5OWhUSm360inUdNQX0dBfi45JiMNdbW43S5aW5qoKC+jpLiI0qJCero6mXTYqbdaKM7LQ6tUUF5YyITdztjIMNVlZVSUlJBjMmKprkIqE1NYVEB9Yx0Gs4GSsmKqLZVkpqeytrbG/ps32J2yhzsOd3y/efppikpKaevpYHp1ltjaFOGVMJH3EUJPguifCKIHYjijdvYI93Bj+k52pu/kpvQbkerFJIj2siv9xm0QlWSLuCltJ7szbuLG1B0kiPfijNqIH4gQWPOcDFZ6D/ZRB9FDhw5hs48jlkpQqtSUV1VSUFrEjr07yJSnkZWrRp61CY9yrZzkjCRSBKns2reLb130Lf7jP7/Cl778FT7/+XP4zKmn8G9fOJtLrriYr13wVW7YdT0iuRChTHCUBDIBmbLM/1PKkGYikEnIlIoRKaSkCQVcdNmlfPOi73DZFZdz+plncNoZp/Pl//wKX/jyV/j6hd/i8quuJiktjaS0VCQKOeddcD6n/cuZ/Ovnzua6nTcgUUpQ69XkFJrJK8ll554dlFvKOHDzR2dJz3faB/ZqProa2oa0I8dZbnXQnplJehyd70r3XsdvnoiX9FjpTlTvzCu8vBloZQuNbj+U/hjYvnNlqPfy3VMb0c1gpRePHawEMDM/Q1dPN/H4FJOTLqanZ+jt7WN9bTNAx+v1sbq6hsftoaevj+eee57nnnuegZERbA4H7V1dxGdmGB0fZ8RmIzYzjcvjobmlhYWFRQA8bi9Ly8t4PF66uru5//77eeqppxgcHCIYDNHZ0YVzYoI333yTm2++hVAozNrqGh3tHYyOjjM2Pk48PsXq6ho+j5fOji6efvppnvzlk4yOjjE3N8/I8Ah9fQPwFtx++x14PF4ikSjtbR2EQmEA5ubmWVlZJRqJ0t3ZycjgIIN9fbhcE/gCfjp6O3H7vXgDXpraWnj88cdpaKzHYrXy4osvHrcODx06RDgcxufzYTabycvLo7CwkMLCQoqKiigoKKC4uJi6ujpef+01br3jdsprLDz7/HO4PR7W1tbxTLoZ7h3gsUce5VdPPUVNTS0rK6v09fXj9/t5/fXXWVlZZWx0nEgkQnd3Dza7g66uLnw+P7fccisOh5Punh5eeeUV7r/vfoaGh1lYWGRwcAivzw/A8vIKc3MLLCws0tnVxd13/2Tzf+T1MjHpoqOjg0AgiNfnp6Ojk0AgSDwWp6mpmYlJFwC33HwrwWCI6elpBoeGWVld5ZVXXmFoaJhQOEJ/Xz+9vb0888yzPPH4E9gdDg5sHKC3r5/B4RF6+/sZs9lZWF5mdmGB9t4e5pYWURv0rB3YYH5hAbFMSjw+BcAzzzxDYX4RXT3dTK/OEl6L4V8LE1z9n4MF34uOBMXG/jpcU86jxnH/OXke657+n9IdL+3xzn8niG79SD+RgMqZA3Gq2yuo67Fug+i7dMRypZvyM7U/gi00xh7hbm5M38luwS72CncjN0pJFO9jd8ZN7MncRYJoL5Js0TaUbnpNU5iI2YnsD20HKwU3fARXfcT3R5hZnzq5xOdx7MMA0TfeeINnnn2Gp59+mmeeeYbf/OY3PPfccxx66SUOvfQSL738Mi+//DKvvPIKDz74AG0dLShUCvYm7MNgMiHXKNmxdyep4mSkWjEStQixQohEJSZFkEyqIIVMSSbX3nAdF11yMZdcein/+bWvceZZZ/KNb5/PFd/7Lv95/lf4wQ3fJzEtgcS0BBJS921rX+pe9qTs+T+mvSSkJbEvNZGEtCR2Je7hwou/xYUXfYu9Sfv4wn+cy5ln/zPfvPg7XHT55Xzv+uvYlbgPoVxCcmYau5P2csmVl3LFD67k25d9hx17drIvdQ9p4lTUBhUyrZQb9lxPcWUR4xNj/PaF3/LyKy/z8isv89JLL/Hyyy9z6NCh7Tbx9NNP8/TTT//R5+UHYR8YiG4t6bkFX1ud8hbc+ec9R02BdCTo/Tng+EFrC0Tt4bE/+gA68kF0JIS+FzCO748wf2CGQy8ff03Y2fkZ+gb7ufX2O7A7J5h0uRkaGWFt/34AYlPT+AIBRsfG6err4+lnnuH3r76Kw+PG7fMy7nQSiscZdzhwej2E4nECoRCdPb0sr60BsLSyii8QwOX2MDI2zmOP/ZxXX3uNUZudcCTKpNuD5zAoPfb447g8XgLBIMMjY9idEzgnJlldX8frDzA1PcPQyCj/9Zunefnll3G6XNgcDiZcbkZsNl5//TXue+ABJt1uxmw26puamTsMxLf/6E5cHi/+QACHw47P7cbldBCPRvB5vfj8fjx+H/5QkI6ebn7zm98wPDpKV083v/71r49bhy+99BJerxef34fJZMJsNmMwGDAajej1enJzczGbzTQ2NvKHN97g5ltuoamtjd///lVmp2cJB0JM2ByMDY7yi8ef4IXf/Y7h4VHi09N4/QF8wRAAP777J/T2D2B3TtDV04vdOYHdOcHswiLhaIxQOMLgyCi/e/FFnnn2OcYdDiZdrs36PAzjt91xBxMuN26Pl47ubu4+HOkfjU/hnJxk0u3GHwgy6XIzMDzM9Owc0Vic7r5+3F4fAHffcw9efwB/MEjvwCDrGwcACMenCITD+AJBBkdHeebZZ3np5Zdx+wMEIxFGHQ4cHg/9Q0Msra3hCQaIT8/QPTjE1NwccqOeA3fcwdraGqWFpawtbwaJPfv0M1SVVNDR3srM0jTh5QjB9TCh1WN7Ef9UHdnPNPbXbY9Vfy/g+GHqRED0eB7a2YNT1PVYaeyvO2pY1FFa8RNe8R4hH1P7o9hCYyTJEtmVeRP7xPvYJ9qLTC8hSZLAnsxd7BXsJlmaiDhLyO6Mm9gn3MOu9BtJOwyiW6/m/fs9mx7RwyA6vXYSRI9nHwaI7tq9m97hAWLxGFNTU0xNTeELBKiqr6W6qZ7alkYqa6qpqaumsCgHiVSISqNCIBIiV6kQysSkSzKRqMUIFQLEykwkik1liFJIF6aSIU5HIBWQKRaQlJZCamYa6cI0MsTpiBUikjOSSBOmIpBmki7aPL6ldHEaaf/HlCraVIYkg0xpJumSDJIyk0kVpSFWiknKSCJNlEqaKIN0sYB0sZB0sQChQky6OIMUYQq7k29ib9puEjMTEKtEiFUi0iVpCOSZZMoyEMgz0RjVZEjTKbOUYWmoptxShqWmmtqaWjo6OohEIkxPTzMzM0MsFuPqq6/m0KG/3Fr0f1EQPdIrujVG9EhA+3O9l39JEN3yiB5ZvuOlP7KMxxvveixF10LEV6M889wz24E177RoPIrFWsXi/AJtTc2sLi+Tb86htbmFQ4cOMT4ywqRzgqlYHJVcweLCAj9/7DEaautYXlpicGAAk8FARVkZbS2tNNU3sLa6hjFbj7Wqiueee46u9g462zsIh0Lo1BpCgSBP/epX1FRbmJ+do6ermxyjifvvu4/bb7uNmmoL+9fXqSgtQyGV0d7aimPchtNuJxIKoVEomYrH+a9f/5rmhgai4Qg9Xd2Y9AZ+9tBDHNjYwFpZzfzsLPk5udRYrDz7zDOMDQ3T3NDIwvw8hbm5ZCkVdHe0MdjbQ9DvY3R4hNzcXEpKS2luaeWpp35Na3sHtfV1PPXUU8esv63pm+wTTuwOO+YcM3q9Hq1Wi0aj2ZZOp6O8vJzXX3+dtY39lFZX8Oxzz2G32RgbHSUSjiARiYnH4vzyV09S01DPwtIiTfUN6LU6HnzgAWanp6m31rAwP4/ZYEQhldHS2MRQ/wABnw+XcwKDLouV5WUe/tnPaKitY21llZbGJvJzcvnv5/+bmakpWhubWFpcRK/LYnhgkP9+/nnamlsI+nyEgkGK8gvIz8mls72d5oZG5mZnaairxaDL4le/+hWhQICq8grm5+bIMeZQX9fA888/T2dHF6MjY4RDEUzGHOZm53jqV09RV1vP4sISnV3dZGcbMBvMjA2N0t3excryCia9iYL8QtIFQlbW15men0WepWV6dpbXX3+du+76CXl5BbR2tjK3Pkt0NUx4LbQ9ddD7pWOB6HsZ1vNh650gOrU/esLlnr9lhvreGmq7LUxvxI6d9l0g6md6I4o9PE6qMoV94r0kyhJIkSehyVORrkwlSZJAiiyJDFUaSrN8ez9RvA+BNgNn1HYSRP8E+zBA9GMf+xgHbruFV199lddee43XX3+dnz/+ODKdBplBh1inRqKRo9ZKUSiESGVCJDIJQrEIkVSKWCFDrJIiUUs2QVSegUyRgUyZiUyRiVQpQCjNIFOSgUghRKqSIVFKkKmlCGUCJEoxco1s83O5ELFCdLSU4u3xk/9XJFQKESoEm95llQixWoRcJ0OkEiJQChAqBciyZMh0ciQqGQKZCIFMiEAuRKQUIlIJkGiFiNQZiFTpZMhSSBOnkCFLR6IWI1IKN2FUkYlQIUCkFCLTSVFmK5ArZSgUCioqKnnttde228Srr77Kxz72MR577LG/aNs8av/PzfB/8ohuAeegu4+6Huu74POjDqNbIDoeHHnXZ8caFvBOCH2vIOqZdmFtstDV18no2Ai2cTvjYzYcDgcOp53axlrkSilarZqiwgJ6urvIMZvIzTHT0FCHyainvq6W1rYWsrO0FOTlUlFWitGQTVdnO1ZLFUZ9NmmpyahVCgrycmlvayXHbMRoyKa21opBr6OsrJSWlmb0+iwKCvKwWCoxGrJpbm48nCaL8vJSCgryMBiy6evtpiA/D41GhUQswmDIpqqqgubmRgz6bEqKC6moKCXHbDw89rMafbaO6upKSooLycrS0travJmHWklFRRnZ2TqKCgtobW0mN8+EVLl585ryjTS2NVFhrSI7x0CGWIgsS0vX0BDZ+Xlkm4109fRgm3AyZrczZhtn3GFnZGwMm9PByNgYeUWbr+F1nKPpQwAAIABJREFUOh1arRa1Wo1Wq0WpVKJSqcjOzkan02Gz2WhsbECrVVNXYyVXr6equITOpiZysrIoysujvKwEvT6LltYmqqoqMJsMlJYWU1iQT06OiY6OdvLzclCrFIiEmZhNRurqaqmpsWA06iktLaGkpAijIZvWlibKykow6LNobm4iPz+X4qICBgb6MJuM6LN11NZayTEbaWpqoLWlGYM+G7FIgFIpx2TU097eSlVlOVqNGoulCoMhm/y8HLo62ykoLESjy6bKYiUnrwBLbR11DU0YzTnk5hdQVlFJtsFEc3s7BWVlZOfkkJ4hQKfSUZxXRFdbF3mmPOQyJQmJyWSZTBhzTaQJMsg2GhHL5Fx97bVc9v2rKKwrI7AWwb3qZXLdhX/l/R1b/X8VRIOLPuLrEQpr88i35hzV954IiE5EHWRoMkiWJ5GqTCFVkYImT0WGKo1kaSKp8mQy1emochTb+0mShJMg+mfYhwWit//4R0cde/6/n0efZyJNJiRdJiJDKkQsEyCTC5HIhEhkIiRyCUKpCJlaQYZUQKY0A7FSiEQhQKrMRCRLRyRNRyhOQyBJRygTHIZLIQJpBhnidCRK8TZwbo0PfSeICuVCBLLMoyUX/FVLKBcgUgoQKTPJkKaRJklBrNoEU6EyE5FGiECZiUAhQKQQIzoM61t1kylPJ1OWhlidSaY8BaEiHYF8s+4yZRmIlaLNfXkmGdLNz8QqERmSdDKFGSgUClpaWo7ZVv5Xg2h4PsTk1LFB9MiB+a3DTRTV5uOf9xwFn+8F1D5UEA0MHzO6PnhkpP5WWd4RfX+i3xVbC+MI25BlS0kXpSGWiJCKpcikcqRSCXKFDIEkk0xxBnKVjGyjjsSUfegMWnR6DYmp+zDnG5EqJKRmpJCXb0YszkAgSKO4KI/09GSkEiH5eSaSk/Zi0OvQZ2lITtpLtkGHTCllX/Ie9KYsJHIRqRnJ5BXmIBBnIJYKyC/OJS0zBZFUgCnXwL6kvYjlInQGLSnpSWQZdSg0cvYk7MacZ0StU5KakYwp14BAnEFqRjIGczYimYB0QSqFJfkkpSag0iow5RpISN5LlkGLRqciIWVzW6tXk5qRTE6eEZlKxL6UmygszUUiFyAUZ1BUXEBqWioqrRatwYhYoSBVINj8NS+XkS4UIJJJkaoUKLRqJEo5UqWCNGEmGZmZiEQiRCIRQqEQkUiETCZDKpUiEomQSCQoFArEcgkytQy5SkpurhGTMQuJIIOS4nyEogwyxBkYi0zsS09AIM0kJ9/EnsTdZBm06E1ZpGQkY84zosnaLFdhST4KtZyU9CRyC8xkCNPIFKWTW2AmLTMVmUKCMcdAWmYKxhw9elMWian7yDbq0OrVJKYmkFNgQiIXkSFIo7iskAxhGiKpgNwCMykZSUjkYrKMOhJTE9BmqzGYs9mXtAdzQS6KLC370lLJyjGhzM4iKTOd3NIi0sQi0iQisnLM7E1PRahTocoxkJiWilajJddgRpCSTq7BhFqlJiUtDZlKiUqlQKNWolQqufiSS7ngwgu54ntXUGopZnYtSmzZS2hxgtCyj8gxYPJP1ZFj0JsG6o8aq36s+/iD05+W/5EgOujuI74eObHrXgkSWwtjLM9GV6TeDGBaPjEQndofxRm1k6ZKJVGaQJIskRR5MroCDZnqdFJkSaTJkxFoMtDkqkiWJpKmSCFZkkCmJh1HdPwkiP4J9mGB6F13/fioY9PTcaQKEWqdEoliExYlSjEylQSpUoxMLUWhlSFVSZGqJEhVEiRKMVKVZBsqj9TW+UeC51b6reNHbh+p4+V3LB3v/BPRsc59v/M70XPFCtFx6mPLS3x0uiMlUYqPqKctHbv+t/aP/C6FUo5SoUShUPDQQw+9q608+eRfLtDwfQfRqfk4E2EHsfUwwWU/gSUfgSUfwSUfvgUPoWU/kbUQbWMtFNTlElj2EFzxbiuw7CG04jshHXnelo6bbvn9UWjFh2vWwUhwgODy29frX3QTWPbgW3ThX3QTXvXjW3DhX3JvatGNb9GFb9FFYNF7Qoouh3FFJlHo5CSlJyKRi5ErZGh1GpQaBXK1DKlSglAmQJ+TTZZJx97kPRSVF5JXksvelD3UNFnR52STmJ5AaUURaqUMjUpBYX4umempmAzZdLS1kJaSREFuDvW1NaSnJmHK1ZNflENC8h4ammsx5mSTlpFMW2czcpUEoTgDa101maJ0DKYsGlvqSD4MOYXFeSSnJmDK1aM36khM2Ut1TQX5RTmkZaZQ31iDXCVBIE6nvLIYoSQDpVZOXaOVzMx08nPyqKupJSMtg2xtFsUFRaQlp1JVXkFZSSmpSSm0NjWjz9aRkZFCTU0lapUcrUZBe2sjSoUUtUpBVpYGuUKKTC5DrVaj0Wi2/6pUKlQq1fard4VCgUqlQqtWo1Gp0ahUh6VGq9YcPqZGp9Gi1KiQqaXItRJqGurIydMjkmTQ1NyEQi1GIBVSaikjXZSK2WSgqaGejPQ0GupqqCgrIyMtlcaGekwGPSnJSTQ3NaLRKBBLMmlta0QiFSBXiKmsKiUtPQmjKYum5jpS0xIpKsqjxlJBUuJuykoLMOi1SMWZVFWWoFSIUauktLU0IJWJMBiyqKuvIT0jFV2WhuLiQpJTEikrL6G8opT09FQstdUUlRWQmplCTWMN2aYsBFIBjW3NKLUqhFIxpZUVpIsFKA1acopySUpNpLS0mOrKctJTkqgsLyE310xKShLZhixUKjkarQqNVsWVV3+XSy67jBtuup6SigJml6JML/qIL3iILAcIHu4bwitBgst+gss+QsuBzXt32U9o2U9g2Y9/xYd/xY9/dfOvb9mHb9mLfyWAf9VPYDWAb9m3ub/ip36oAfuUneB6EP/K5meBVT/BtSC+FR/+Fd/2OYHVEP6VzXSB1RCB1QCBNS+BVf/h/AL4V72b2k7jJ7C2mUdgNUhwLXx420doPUxwLbh5vdvnb277Vvz4Vw5f74r3cJrNckUPRPEt+xCahPR6eolsRLfPezsPP95lL/7DZQmsBgiuBomuhzBW6dEWawitBgkcrrfgSoDgqo/QymZa/6qP4LoP/5oH/4qf2IE4zlknOXUmsiv1GC1mTFYTZW2l5FhzMFaZybHmk1ubS2lrEYaqLAxVekzVJnKtZhwxG7GNCKE1P8F1P8FVP4EVH+H1IFP7Yzz5XydB9Fj2YYHoq6++ur3/1ltvMTTUz96Em/j+D67i+h3Xct2N13Ltjh9s67qd1/LDG6/jup3Xvkv/n733jJLjONM198f+2Du7e87dvffunbPn7o6hKENvQIIwhAfal3eZ5W1mlq/qbgD0pECAILxph/bd5X1VNwxBomFJkZTEIUWv0WgkarQiNZJmrkYjzcjdZ39UdxNWgkRyhkdHcc5zMiLyiy++iMyueis6zcb2DVdwLbuWzk2X8FF9XhzjxbH+e3C1WH6/eC4aa+tl22tw1fm6Spt1LWtZ37qOdS1rF9nUspENGzbgcDh49tlnrzhXfvnLX/6bnpuXlD+qw2NHj5GrZamfrVJ8Lk/h2RzFZ3NUTpconMySPZGmPFfkSHGQbX2PU5rLUjyV+UQpPJem8OzHQ/G5DFOzYxwp9VE5k6c8l6U0T/FUhvyzKapnCxRPZcidnP6w/0UyFJ7NXReN5+pkSxm8sgezzYQ74Gq+lzfoRwoHFl+T5pW9eGUPDq8DwSEsXgQuOgWsLhHBKWAUDRhNBmwWEZtFQDCasFkErGYLNouAQ7QiGIxYDEbsoojBqMEiGhBFE2aLAbNZjyCasNksiKIZQWhiswsYTVocDnHR1iIYMFv0mC16LBYDDoeI3S5gMusQrSZEqwmjSTvv04hFMGA06RBEI2aDEZvBitPkwK63ImqFZt5gw2Vy4DI7sWpF3KIbm9WBxWJBECxYrQJWq4DdbsFk0SKIBtweEbvDjMdpx+t04XG4Ltku5C8uX47H4cRtdyzistlxOZw4HAI2uwGbzYXNYcRk0mAx2xBENSaTAasoYjJoMGt0uC02BI0ej2DDLVhxGC2Y1TpcFite0Y7basdqNmI1G3FYLYhmA1aLEZtgamIxYhWa++xmI36bFbtRj91kwGk2YTM084JOg1sw47VZsVsEbBYB0WTBar4Ii4DTZsNld2ATBGxWCza7EbNFi9miQ7QaMZp0WK0CNpuI0WjAZrNjNpuwWs3zx0qL1WZGEE3YHQKCaMLhFLFazSSSEUIRCW/Ai8vnZO2mNdy97B5WbFjJg9sf4ujZY/Ore83Vy+KzeYrP5ameqVCay1OaK1A5XaZyukjldInK6RLlMyWKZ0sUz5TIn86TP12kcKZI/nSO7Kl8M3+mSPpklsKZEvnTBbYPP8XE0QlK50sUTpfInMqRP12geLZM9lSO7FyW/Jk86WezFOaqZJ8rkz1VoDBXJz9XInt6mvzpLLlTxSZz6SanyuTmquTmcuTOpMjNFcjNlSmeqZKfy5M7naN0tkbhTJHsqdx8+wK5uTy5UwUyz+XIzeXnY8o0beby5OayVC7UyJ7KIcREDuX6qJyvkT9dID9XJD9XIH86R+5UgdSzGXJzOQqny+Tm8uRPFWhcqNG7o5v4F+OUz1TIPZuh8FyRwqkihVNZSnNlCqcrZJ7LUzybJ3c6Re5Uifxcrdn/mVQzrjMVCmeKlM+Xm/M8V6Ny/lhzXs+mqLyQp3S+RPZUU3BXz5QpPpunMlekMleifq5K9XSZ6pkSjXNVvvP+ex/1K+UPMv17CdHL03e+8x46g5o7776NVWtXcv+6laxYs5yVa1ewcu0K7l+3klXr7/9IrN6wijUbV1/C6g2rPpLP+9etvIKPGucfQiy/KcaFY7pizXKWr17G/atWct9997F161Z++tOf/tZz5ZNMH7sQLZfL1I7XeOaFY8ycqdM43XxP8ezZxmL+5JdOUD5ZmP/3U/UKmq+d++1cb9v66TL106WPhcaZCqWTWVKNCeqnyxy70KBxtsLsuYUYKhw9X6N+ukzjzAKXx1Slcbr2Wzl++hiVmTI+xYvdYyOcCBHvjSFHJYJxhVhPFCkcwCN5SGxOcmiwj90H9nCg/yD7+w6w9+A+vvjUNvzBAOFEhHgyTjwcJRGJkozG6Y41iYcjJCLR+XKCRCxOPB4lFovQ09O85jMcDhKNholGw8RjUUIhhXA4SCwWIRIJoSgSLqeDZDLOgQP7OXhwP4cPH+Tw4YPs27eHHTueJBIOEQj4iEbDxGIRkskEkUiIeDxKIhEjHA7Sk0zQHY0RD4bpjSXojSVIRqI80NNLdzROdyTG1mQP0WCEWDRBJBIlHk8QjUbn4wsRi4dJdkdIdkeIxYN0J2L0JpK/FwtzdDHxaJyengQ9vTFCwRjRmEJPT5xwKE40JpFMJolEomzuiRMPyiTCIXrjUZKRML2xCD2LROmOhNmciNGdjBONhBavzU0mYiTiUbqTcZKJGLFomO5EjM2JOPFQiN54nO5IhN5YjN5YjEQoRHckskhvPEEyGiMRiV4xjng4snjMk4ko8USIWDxIIhkhmYwRj0eJRsLE43ESiSSxWIJwOEIkEiYcDhIMyvj9XtxuJ9u3b6Ov7xB79uxiYKCPAwf2cvDwfhLdUUyCnmWrl3L7PbeyfP1yHn7qYWZPz1A5WaBxpsLsuYVnfFaZOVv/8G/jTH3+tZNN6meq1M/WqZ+t0zjfYOb8DLMXZpg5X6N6pkbtTI3a2eYNUPWzVWbON9g1spv00RSzF5r2jXMNZs43mL0wQ+Ncjcb5CjMXqtTP1Zg5f5T62aPUTteZvXCc+tkGldMFZi5UmDk/S+Ncg8aFMo3zFRrnjlI/c6wZ07ki9bNV6mdnqJ9r+q2frTKzkD9Xa7Y9X7+IGo3zdWbOz1A/V6d+rsHMhRka52vMnJ+hMlfGHrFypDDIsRdmqZ+tzY+9RuNcjdkL8/Gcb9A416B2pkLjbJVnXzrBE/sfY9vBxzn+/FFqp8vMnp9h5myd6lyJ2XMNZs4dpXamRuN8mfq5MvWzs1ROzTR9Xyhz9PkGR58/1uzn+fnYzx5j9sJxameqHH2hxjMvzzBzoc7M+Vlmzs0wc6bO8QtHaZyucez8DI3TVepzVU5+6QQnXzjO373/x+eIXi19WoToj/7hR7i9Dja2rGNT2wbaVK2LtKvb6NC006Fpp13ddgUX216tze/K1Xx+FH+/qZ/r4ePu93eJ53rtrnYMftv8tnRuYlPHRlrbWmlpaWHbtm3Xda58kuljF6IXLlwgV8yQa2RJlaeZKk0yXZpiujRFqjxNqjxNtpZhLDvKwZEDZOspsvUUmflttp4iU5u+Pi5vd4226eoUqcrkx0K6OsVEYYzBqT7S1SmeOXeMZy+c4LnnT3Li3DHmvvQsp144yYmzR0lVJpkqjjNVmmD6IqZKk815KU4xXZy6anm6OEWunCVbzDB35hRffeUrfO2Nr/HGW2/w2uuv8eZbb/L2O2/xyBOPcM+ye9j8wBaOnjhOfbbB2OQ42UKOvfv38dgXH+dQ/2Gy+RyZTIZ8Nkchl6eYL1DKFynlC+QyWXLp5r58NkcmlSaVSpNOZ5iYmGRycorR0VHGxkaZnJxkZGSY4eFhjhwZYnBwgP3797N371527txJX99hZmZmqFYr9PX1MTExwY4dO9i5cycHDhwglUqRTqfI5bIUi0Xy+fyl5DIU8xlKhSz5XJp8Lk2pkKVUzFIp5ikWMhRyGUrFArlskVy2SD5fJJ3Jksst+MmRyabJ5lKUSh+O7/chn8kuzsuH5CkU8hRLeQr5Crlcmmw2QzZTIpdPkc8XKRTKlEo5ioU0+ewUxUKacilDLjNJqZCmUspSKqQpFdIU82lyhebjoyrVMoVigXwhT6lcIpvLki/kKVcq5AvN8RVzeQrZHOVCgWqpTKVYpF6pUsrnKReLVEslcpks5WKJaqlMPpOllC9QKhSvOP65bJZsLk0+nyWVmmJqcpJ0OsXk5BRjYxOMjU4yNDjKyMg4Q0NDHDp0kAMHDrB3716eeuop0ukUR48eJZ1OMzQ0xMBAP4898Sg7d20nFJGxuax0aFpp17SyY98XOXl2lpPnj3P8XINj52bm319+lKNnZzl+7vhi+dh8/vi5o9SerVB/rsqxM7McO3OM4tEck6VxUpXmZ8B4YZR0dYry8QLTlQky9Wl2HNzGkfQQ6VqKVHWSTC1NujpNqjpFpj5Fpj5BqjZOpj5NqpoiXc0wXU43y7VJpspjpOvjpGsp0vUp0vVR0vVJ0rU0qUqaVHWSVHWMVG2MVCXFdGWKVHWKVHWS6eoYqeok6dp0s23tSlLVKdK1dNOmNt30W50kVZ0i+kCYganD87FNLtanqtNk6tNk6xnStRTTlcnmeCuTlGayPLXvizx9YBuF2jSZ0hS56iSZ8jip4jjp8gSpSopUbYrp2gip2jipaopUNU26nmKyPMxUZaQ53trk/NxkyNRz831NkalPUjiWIjc7TX42T/lYhVQ5xWRhgmwtQ7qSIl1JkammKc7mydayfPf9737Ur5Q/yPRpEqJWu4W2jk10qtpo6dy0KFw6tR106TpR6bvo1HZcwcK+i+nSdV6BSt+F2qC6hN9k+9v8fVSuNpZrje/fguvt+2p2l8/Xb5rXLl0nHZr2phjt2kRbeysdHR3s2rXrus6VTzJ97EL0n3/6U7Zt34bT58Dqat5IY3WKWB0iNpcVi83cfHyD24Zot2BzidjcQhOXOF/+ELtrHvcC1kUut7Fdxcbubj5SwuoUsDkFrK4PsV1Wt1C+xM45j8vSxGnB6hKwu63Eu6P8zTe/wT/95J/4yU9+wo//6cf8+Mf/nZ/+7Ke89vqreALN6yBFpxnRYUF0mBEdzcdbiE4B0SE2WSjb53E0tza3lUgizA9+8PfXnO/Dg4dZvmoFTz21kxPPnGRmZpadO59maGiYnTufZu++/YyPT5DPF6lUqpRLZUrF0iLlUplqpUo2k2VqcoqJ+ccRjYyMcWRojOEjY/T3DdLfP0hfXz8HDhxgcHCI8fFxRkfHmJycYmBgiKGhYfbs2Ud//yCzs8eoVKps3fogu3fv4amnnmZ6OsXg4BGmp1PkcgVKpcq8cCySyxXI5QoUCiWy2Sy5fJZiKT8vJtMUS3nyhRylUmGxvlwuUciXKRWrlEtVstk8pVKFQqFIPt/0VSyWKBSKFAp5CoXCpeTnubz+MorFIqV5ivOUS2XK5QrFYpFCvkKhkCefL5DPNfPZbJ5CoUwun6VSLVAqZSmVc9QbJfKFNLlCmkq1QL6QplTOUihmKJSbzxvNlUrkS2Xy5XIzP7/NFArkSyXyhRLFYplMNk+hUKJcrpIvFCkWmzGVShWKxTLFYqkZb6FIuVymXCqRz+UpFUsU8nky6QyZdHr+OI5y5MgIIyNjDA4OcejQYQYGhhgYGGJwcJihoTGGj4wzNZVifHxi/ngfYefOp8lmc5w48Qzj45Ns3ryF7dt3sG//Pl597RVefvkl3nzzdRqzFeLdIRK9CvHNEpsfSrL54QSJByJ0P5Sk+6Eksa0hkg92k3goRuKBKIkHksQfjJB4MIYSk4n3BNnyYIyeLUk8AStmmxarw4LZpsJs1WFzWfAErFhdJqxOCyr9JkSHAavDjNnWhegwY7ZqMYoqRIcBwaHGbFNhdRkxW7UIdiNWhw2TtQvBocHmtmCxq7DYjAgOHYJDhWDXI9hN8xgQHJr5ehNmq6a532HEZGvDbNMv9tNsr0dw6BCdBix2PSarqvmZ4NRjEtUIdjOCQ4PoMGIUtFhs2mYbuxHB0cxbbKZmzE4zgt2A2da0F+06HE4jok2HwdSOIKqw2c2YLe2YhY7mpTDmDkyivjleeweiQ4/oMGGxGpr+HFoEpwrRYcJs02CydiLazQh2M0ZBjc1txu42MzhyiOdfPMuZc2eYPTrL5gc3I9gt2N02jIIBwW7B6hQxW034FT/ffu9bH/Ur5Q8yfVqE6Fdf+QoqdQcbN62jU92OSt+Fxqi+gsuF5O+Cxqi+5MH1WpPmd/J5tXiuN8aPu+1Hsfu3iudqLMz5wo+KDk07nV0dtLW2sXXrVn72s5/91nPlk0wfuxD913/9V7Zt20ZA9uN0O3C5nbg9LpxuB26PC7fXhcfnxuNz43Q7cLhsOFz2y7BdRLPO7rRdgc1hvYLrtbteruXP43OTSMb54Q9/cNV5+PZ7316cgyvHdyVOt+MKXH4nic1xPvj+B9ec74P9B7E6bOzevZcTJ56hUqlSqVSpVmrs2rWHgYFBMpncvBCtLIqrYrFINpslnU4zOjrK6Ogo/f399PX1MTw8ytRkhuEjEwwNjjI5kSGTyc/7yVMsFhgbGyGfz1GtVslksqTTWQ4ePMTAwBC1Wp3Z2WPMzBwlny+ybdt20ukMQ0PDi7E0hVyZWq1OqbQgnEoUSxVK5eZD1SvVOqVKlVyhSKVap1KtUSxXKJYqFIrlebHZbJvL5SkWy4u+SqUqlUptvq5EqdQUZgv5crlMuVymVC5fUlcqf2i7yHx5sU2pvCh6s9k8uVyearVKqVSlXG72WSiWmuK0mKVYLlCqFMkXc818tUipUqQ+U6VcKVIoFShWqxSrVQqVCpVGg1y5TL5SoVCpkC9XKFZr5Mvl5vjLFcqVKqX5bblaI18skSsUKZWb9dVajUqlQqVSWRxbPp9nenqasbExRkdHGRoaor+/n/HxScbHJxkaGmF4eJTJyWkymSzV+flLpzNMTaUWxW4qlWZ6OsX27U8xNZXi6NFj1Gp1ZmaO8vTTu9m3bx8PPdxDZ1cLNrsJl0+Dxydid2kwWjZhs5uwWNUYhU7MNiNmmwGTvQuT1YzZpsEgdmIUDJhsKoyiGpNFj2DRYHfosNsEBKELm1WH3SpgNrcjinqsViNmcyeioMNi1iOKXVitBgSzAYulHUEwYLaoEQQVgqBFtHYiiJ1YRS0Wc3NrE+1YLG0IYgcOuwXR1oEg6BGtKkRrO6JoQBB0CBYdNtGEVVRjtXUgCgZEUYXNpsdmNWIW1yIIeqyiHtHWgSiosVjUCEIXoqhBFDRYLJ2IggmbXYMoqhEFMxahE7NJjd1uQa9vQxC0WAUTVpsaUdAiWEwIQjMms1ndFJxWPVZRjcXYicOqxyp2YTG3YRMsmM2bsJg2YhMsCOZ2BIsOq02DILZhFQ1YrQZMRhUWsw6jsQNBbEUU9IiCGrOlDYfNgtVqwu5ozt1tt36enp4Ix47VqVer/OxnP2N8Ygy/5Lvis9Zg0uPyOHnvO3+8RvRq6dMiRJ879QwGo4ZNretRaTsXhejlwnHhTUi/D5f7+l19Xqv99fj7uNt+FLt/q3h+U9+XrEarutiwYQOJRIIPPvjgt54rn2T62IXov/zLv/D07qeJJaJIcgAlJBMMK8hBiYDsvwRJDiApEpIizyMhKRL+gP9KpMCnBl/ATyQa4bHHH+Pvr7Fa+a1vfYtwNNJsE/Djly4i4GsizRPwISkB5KB0CUpEJt4b4/0P3r/mfPcN9bFy9QoefHArc3OnqNdrHDs6S6NR49Chg4yNjVIo5MllM/NiqUQ+nyeTzTA2NsbQ0BCH+w4zPDLMyOgow8PDpKbT5LJlxsdSTIynSKVy5PMFypUK9XqVTHaKTHaSQjHD1PQEfX2H2bNnNw899CA7d+7g+PFjVKsVZmYa1Os1tm17gmIxz+DgAPl8jmIxT7lSolIpUW/UqNdr1GpVarUq1WptXnQ2qFTqlMt1qtUGlUqDarVBsVihXK5TLleZmWlQqzVXIRuNGuXyhwKzVmtQqzWoVGrUanVqtRrleWFWrVap1+vU63Vq9Rq1WpPFunkRVy6XqVarVKtVKtUKpflyrVZZFKSVSol6vTHvt0Kl0oyjXqtRrdaozvdbqpSbfdVrNGZmaMw0FsvVWo1KvUq2mKdcr1KdqVGbbVCdrVOoFKnO1ilWy9Rm6xTLRWZmG8zMNqjWq1TrFWaPzlI5j5AWAAAgAElEQVRrVJmZbVCfqVGpVmg0GvOx1igUCkynUvT39zM0NMTg4CDj4+OMjIwwOTlFoVBiaqr57/jJyUmy2SyVSplarcLMTJ1SqUA2m6ZaKTM9PcXBgwd4eudTbN26hcnJCZ45eYJGo87Jk8/w9NNPc+DAQVKZMb647VGe2vkEkbgJn8+Cy63B6ezC7RDxuEx4PAZcLgGPR8Qvm3A6nbg8BuwOFU6HDY/fhNtjxuu243Lo8XtNeJ0OvG4tLocer9OJLJlwOyxNnDq8LjMehxVFMuN1CXgcNrxuFW67iMdpQvZbcNn1+LxaJL8Jt8OAx6nB5zHgsXvw+9W4XJ14nFbkgI6A14rXo8fv1eFzO/C5BdxOAwGPHa/bTMCnweMUCPhMBDxWvC4rXt8GvC4Rr8tMIKDB5zHitOvwuvV4nAa8LhNetwG33YrkM6FIIm67A5/XQMBrw2W34LCp8TiN+Fx2Aj4THpcZr9OBFNA191v1eN0GPE4zXpcen1OP32lCCZgIeDR4bHYknxqvqx2fw4XiN+P3WHE7Nfi9GjwOKz63gNOuw+MUcNkM+H0qXHYjPo8Br0eL3+NozqFLS0fbGrZu7uGLTzzAmlW3s37N/bz95jsUi3liiShevwe/5MPlceLze3G6HSghmfe+8x4ul+ujfq38waVPixCtVApY7RZa2zei1nWht+jQmbXoLbpLMIqG35vLff0uPg2C/prtr8ffx93WIOh/b7tPYizXewwuF6QaoxqNVk1HRweKovClL33pt54rn2T6RITo7t1Pk+iJo4RkQpEgoWgQJSyjhGTkkIQcklBCEkpIRgkFkedZzAeVK1DCoX8frhKPEgoSjkV57InH+Id//MerzsN3/u47JHt6UMKhq4xHulJ0hmWCEYVg+CJiCr0P9vCDH1x91RVgcHgAm8PCE48/RK1a4pkTsxTyKQr5NEODfex6ejtjo0OMjx1h//49HDp8iN379rJn317GJycYmxhndHyMwSNDjE9OMJWaJl8oUKvNUKvNUK83KJVKZLNppqbHmZgapn9gL/v2b2f7jod5eteTPPHFR3j44a08uf0JduzYxuzRGsdPzFAq5ymV8zz11Db6+g6we89Oho70cbhvP0PD/UxNjzMweIhMZorxiREO9x9gamqc4SNDTE9NkZ5OMXzkCCNHjjA1McGRwUEmJyaYnpxiaKCf/oEDpFJjHBk+zOTUKBOTowwNDbD/wF4GBwcYGOhnfHycVCbNxFTzQfYLTExNLjI+OcH45MQV5fHJicW5SWXSjI6PM51OMTw6yOBQX7OPwf0UigWGh4cYGNrP8PAwY+NHmJwcIZWaZHxshKHBPsbHhhkdHmRyfJR0apIjg30cGeonk5picKCPsYkRMrlpDvXtZ2JqlPGJESamRklnpxgc6uPIyECzbmKUsdEhspkp+g4fYGJ8mFx2mpHhAVLT40xPjnFkqJ+xsVH6Bvo53N/H3v376B8cYHR8jPHJCYZHRxgeHWFsYpxcPj//A6DC0aMzNGaqZLLTTE2NUipnyeYm2bN3B4f79rF9++M8/MgDbNv2GF/84qM8+thDZHPTNGaa18k2GhV2PPUku3ft5s03m68e/cUv/oVtT8pIPgG/V4Pf24XfaUf2zotFt4DkFwmGDHicDgI+A16PGq/TjiIbkQMWAm4bAa8RJWDA73Ii+bX43QYCLieRoIGAS8DvEpD9BiSfGb/LSiRoIuC24HfakPxd+BxWJI+ZiGLG5zSgBHSEZRM+lw7Jp0b26/A7fQTlTvzeDgJuJ5GQHsUvIvnUhGQDkseB5DUT8OiRPDYUv0hIUeF3m4gEBQIeAa9DIBzZiOKz4XMaCQdVyH4DPpcexa/H79YjeU3NvMNBUDISVgR8DgdBSUcoYMdjN+NzqQl4jEhuOyHFSMBjQnK7CAd1+JwiHoexGbPLhOLVoXgNSC49UVlPyN+F5HASkbuQfa1IDhdR2YTiE/G5VYRkLX6XDclrwe/W4nMK+FwWQooKr1NPSDYSDhoIuK1sTkg4bW0Ipg4AXnv1ZTpa70XVupEXX3iJSq1CJB5GUpqLDl6/B2/Ag9PtQA5JvPed9/5dRNenPX1ahOgbb3wNm0NApelAZ1BjFJvvjP8owvOPfPowCPpL0Ft06A16VF0quru7/wBXRH/2L+za+zSJLXGUmEwwrhBKBJv5mIISl1HiMsGYTDAeJBgLocTCKLEwwfmtEgkiz7OQl8LKvwsXx7BAMBYmkozx8BOP8N3vfpdfXPRqrJ///Of86pe/4p133yHSHSMUCy/6UCJBlGgQOSojxySUqIwSlZGj0uJcLc5RTCbSHebBxx7gve+8xy9+8Qt+/ouf8/Of/+tF+Z8zODKIx2sn4LWRz07zzz/5CU/teAKfx843v/k3PP3UNl5//VXefusNWlvXs2PnDo4eP87A8BEGR4bJFPKUa1XS+Rzj01NMpVOkc1kKhfkbZkoFhocHeO21V/jbv/0GJnMnT+96gpMnZ9iz70l+9KMfUm9U0Ok7eenlLzE+PszRo3X+8b//I08++Riy4uX8hTPs2v0kb771Ot/85jewCDr2H9jNuXOnOdy3j7//++/z3HPP0NG5kRdeOEc2PUmlmOWD99/n4Qd6cdpMvPvOW4yNDPLKK1/m+x+8j+R38Oijm/nKKy+yd98Ovv/99zl7do5NLWtpaV2PwaihS9XOyMgwP/zhD/ne977H+++/z/fe/16T713EB+/zwQcfzO+/yOb993n/gw/43vvv893vfpcP5vMPPbwFi6BDo+kkINv41re/xde/8Q46YxsHD+7n+efPcrhvL9//++8zO1NBp97AhfOnGR46yIljdT744H16EjKPPtLLG6+/ygObY/ztN/+GN998HaNJTWp6gmPHZhgZHeRHP/ohuVwalbqVr732KiNH+jn17DP88Ac/IB6RCMs+3n7rDQYO7+P/++53eeP112jbtJZ8Psvc6dNs27GdqXSKg/19pLIZitUKmUKeyXSK8ekp0tk01VqJYinH1NQox0/McP7CKSTFRWOmwtFjNfYd2MkH33+fcjmHSt3GK698me07HqfeqPLjf/ox23c8zpp1y7EIWrpU7Tzx6OO89OLz/PrXv+bHP/4RTzzhRvELSF41IUmFZHcS8TlIRET8bjMhSSQW1eJz2lAkLXJAjd9lIxo2zgs8kaBiJhTU43fbCYW0SAE9AY+DWFyL7Bfxe81EI2YUyYTPLRKPGwj4jPg9VpRgOz63iCKZicfM+Dw6QkE1sagZn1dDMKhGUTT4XT4i0XYkuQ3J6yKe0CNLFmS5i1isuVop+Q0okg6/VyQUtBKNqfB5DCTiIpLfgtthJNGznrDiwOvWE0uoUGQ9fp+OcMiA36tDkc2EQwtj0RONmvE67UQiaiIhB26HHsmvRpaafcZiRuSAASXgJp7Q4vcI+DxGQkEdfo+BsKQjIhkIuDUkojqiwQ4kp4PumIqQsomAw0EiYiIoCfh9nURjOnweKwGfAVnS4XObkf0Csbgar1tHJGIkGtPjc5kZGdrLA1udWCyb+B+/hldeeR6t9j4Eo4oXX3iJYrVAbHMUf9CHP9TEF/Ti9DmQwgG+/Xff/qMQvUr6tAjR73//AyTZj90pItia74U32YyXiNGrCdOLV/wWxM21RM/1iqOrsdD/5Vyvv4/S9ppxi/pLuFqM1zsPi/ZWI0brb47po4jQy/s020yIVhGn08mePXuu61z5JNMnJkRjW6NI8QBKUkZJysgJaTH/IQpKIoiSCF2CFA8ixZVLCETlqxO7Rv5ym+vlKm2uiCUmE+qJEuqJILhEjDZT89VnbhuCy4rJbsbsFAj1RJATV45FistI8cAlyAnpCpSYTDgRwid7CSh+pFCAYFRBDkkEo0HCsRBrN63h8zf9BTr1RmyClqDsxqhrZ/nS25ADDsyGTpx2A73dQZLdYfqGBkjn84xMjDOZTpEtFik36hQqZY6MjfL49ifpPzLEo489QkvLBlavWUFnVwserw2PV2RDy32sWbcEt9eA3aXG4xPx+Kys27AMk0WNx2fF7jDi9lgxmjq55dYbSPYojE/0EYr48PntqLWbWL32Prx+Gw63Ga/PRkBysHrtvXR1riMkificOnwuA36XnmVLPotDVCF5TDitGpxWLUbdBu646zO4PCbcXhM2hwmH00RL22r+4//xH7jhxv+Hz9z4Z6xeswIlpBBQFORQc5VbDgUXV7yloIJflvAE/PhlCUlRkIILq/QhgpEwciiEHArhkyQ8fh/LVtzNn/3Ff+WGG/9fDOYWvD4nHq8dtW4tK1YsJaA4kBU7Ho+I4jexesUXMOrWEZJMuOxdBCULDrGVVctvxu1Q43Pp8HlFgoobjXojLZtWoUhOfB6BgM9BwG9j+bI7sIl6IoqbgFskFHBhNXax7O6bkX12JLeA4nPgsRtZu2IJiUSEcq3K8PgYE6lpRibGyZdLVGcaVGcaZIoFntqzm70H93Do8F5sdhMbN61Gq+vAaFZx/5q7aW1fjaTYcXmMSLIDt9fC0vtuRW/owO0VcDjNBGQXZkHFX9zwp/xff/q/8pnP/hl9h/p5/NHNuBwiAa+deKKDoE9A8nQRldVIVgcxv5PNcRt+p56wbCEeVeG1CYRkNSG5i4BTJBnTEw+b8XtMRCImQmENXpdIJKpGljT4PVYSSS1ywILfZ6C724wiG/C4zMQTzX+/+70CwXALPo+FYNBEImnE61ERCncRj5vwersIh7tQlE68TjfRRAtycCOyz0F3jwY5YESS20kmDfjcIoGAlmBQi9dtJBwSiSU68LjVJJNmZMmM22kg3ruKSMiOz6sl0dPRFLk+DZGIDr+vi2DQSCSqxe+1EQpriMWMeJwi0ZiKaMSOw6ZClrtQZB0+j4Vk0oQs6QlKLhLdavw+C36fjlBYjdejJhTUEAnq8bm7SMQ1RCNt+J02entUhMIb8NqtJOJ6FNmEz9dKIqnF61oQ4Vo8Lj2KJJDsUeNxq4hG9cTizUsKRoZ3s+UBG2bzen71y1/zlS+fQ6W+E4Oula+8/FWypTSh3iCBmB9PyI0/6sMf9eGQ7ARi/j8K0WukT4sQ/ed//mfm5uYYHBrE5/MiWps3F1vsZsw20xXi5WKRZbQaMMxjtBox2UyYbEaMlzNvY7KbmrY2IxaHebHtb8JoM2Kym67gij5sxqu3XxR5F3G9ba82lqvE0xzj5Vwjlmv4MlgN6EU9elGPxWHB4rBgtBnRCzp0gg69oL9qLDpBh8luwuwwY7Kb0Ak6zDbTIgtCd+HZ4oLDgtlmwmI3s+WBLZTLZd56663rOlc+yfSJCdHolghSrCmwlISMHL9MiCZklMS8EE1eRCKIFJOQ4jLyPFJcJpgMEewONbfzLNhfzMX7F9ooCQU5Pk9CaZYvq5PjyofxzCNfbJf4ECkmE98Sxx5wsmzdcpauWcry9ctZvn4Fy9evYNnaZaxrX48cl5t+4jJy7EOkmIQUC1xJdJ5YADkqEYoH8cle2lSttKpamtuulsVnhbV2tbBq/f3cs/RWRKGNro4VLF3yOfS6jaxYdjtLl9yCUduJ7HNyeP8uyqUslXqJ6dw0E6kJyo0yMydmGJ4YZuvDW4n1xIj3xkllpikWczz26MOYjFq6Olu4595buP32G9i4aRlL7rmRtvb7MJo3suSez9PecT86/QZuv/3P0RlW0aW+n3uXfpYu9UqWr7gdq03D8MheVq9ZwvLltyHaNnLfsi+wYdNdWKzrWLrsFto6ltGlWsPSez+PU9yISbuMZXf9JQFXOy3rvsDKez6L3bKatSs+x8p7P4PL3saSu29kw/q7sNnbueOOP6el9T4cri5uu+MvWLr0Tu67715WrlrG/WtWsnrjWta1bGB960bWtWxg9Ya1rN6whtUb1rJmw1pWb1jLqvVrWLV+vm7jOtZuWsfqDWtZ37qRlWtXsa5lA+s2rWfpsjtYsuQWbvrCDehNK/jzv/hPfP6mP0VwrOS//Jc/Yc36m7E521h6701o2pdjVC/n/ns/j9u6ic6W21i97POEAp2sW3kjG1ffRNCv4f4VN7Nh/S34PBruuuMzdHUsxyq2sPSez2HUr0Wjvo97774Rp9iKtmMpq5d9Fo+tk41r72Lt/Xeg7ljL7TffgF7VytNPPs7U9BjlRplitcDQ2BC5UpbqTIVcOceufbtIbkniV/xs2/EYjdkSR4YPEY1LdKo2sGTpLazdcB+33vGXrFh1B2rdeu5e8jk6OtfQ1nY/S+75DBaxhc6u5dy37LNYxFbWrV/Cbbf/JXfecRP9hwfpjgdYcsdNbFq3nGB4PZLPhN/dRljpwGcVCftFeuICXpuaiGSmO67GbxMIBboIy5347RaSUS3JsBmvQ9tcHQ1r8TlFYlENQUWH1ymQSKgJSgI+t47upJmgZMRtN9HbY8Lv0RHwiEQibXidZoKSiUTciN+jIRrRkowL+DwqIpFOQsFOfE43sfgmgsEWAm4nm3uNyLIRSW4h2a3H67Lg96tQgmo8LgPRiJV4dztuVxc93WaCkhmPw0j35lXEww4CXj09vSrkgIqAV00yZiLgVREOGolHDfhdNiJhHd0JCx67SDKhIxa247CqUWQVQUmH5LERj+lRAnoisoeeXi0+lwnJZyIW0eFzqQkHNURDRtz2NnoSOmKRdrw2K5t7VUTCG/GIVrrjekJBMz5/C8luDV63BZ+3KXh9HgPhoJV4sh2vp4tIVE002kkwIDJ8ZDdbt1ixmNfxq1/+mpdfPoNOexdWcxcvfell8tUcyYcSeEJu5ISEL+zFF/LiCNjwR3x/FKLXSJ8WIXpxOnHiBGvXrWVT20Y6NO3oLU1RIzgsi0LmYkFjspswOUwILgGL07IorMwO8yVYnBZMDhMWpwXzvAC9mri8Fr9NCH4aMf5OtsYrxK/BalicO7PDjNFmvGJeF8Tngv3C3Iiu5pN4Fo6T4LAsXlPapmplfes69BYdP7jGjdbXc6583OkTuUZ034G99GztJpIME06EiCTDRLsjRJLhS5l/LWUwfhExBSUqE4oHF+1CiRDhRIhwcn47T6Q7fIXPK+zm86F48BKCMeUKQvMxKNFmDHJEmo/l0hgXfCgxhUDIvzjGhW0g5MeneFGi8rxvmWC0iRL98F/wi1w09sVyTCGcCKFEZTySm2BMuWScoXhw0b+k2AkGjfi8akRLGxZjOzp1K8lomIN795MaT1FIl6hX6hSKKabTo6Sz4+zZu4NwNIBG105r2zo2blqFaDPw0MO9jAwNUM5leO7EUeqVPEMDB3j8kc0kYxIGbQsG7SZESxdmgwq7VYUkGbHbOvD41uDxtOF2tWG1rUGnbiERlRg5sge7qMMmqpFD63HY25GVNgLyKlx2HX5/Fz6vHrfdSFjWIvnW47VpiQZVyIGNBJxmQsomvM5WAm4NEdmAz64nIhtIxMz43CpkSUskqsEf0BIKyQSVOEqwuYK88CaqBT48NhfPe/CK80SOSgRCzTdZ+RQvgZCfSCxAJOhn5bIlaHS38Z//8//MX97wJzh9d/Mn/+F/Yv2GGwhFVPicBkJeEdndiU+00B22EnCtI2C3kIx04rWvRfGoiSoqfB41Hv/9KMEuXA4tktRBMKTC49YRCHTi9CzD4+oiGlSh+Nbhda1FCnRiNq3FaNyIojh55NEHGR8fI5vLU6kWKVeyTE4PM50eZXLqCFsfTOIPOFi/4X5W3H8PWn0H4WiAHTsfJ1eYYvZomRMnG6TSozy9exuJZBCr3YDBpKK9Yz16bRs2QYXb1YXb04bP34LTtR63ux2PW43sF7FZjBzae4jHHunGYTXg91iIxDYi+Y34fC3IyibcDhMBv55YxIDsMRKVLfQktPhsFoKBLsKKCp/dQndMTzxswmPXEgsbCcsqAk4biaiOsKxHcllJxtQoXhN+p5ZERE84YMbvsLA5aUL2GAg4rUSC7QScVsIBC/GwEb9LSyxkZHPCicfeQSzcSVjpwG93kIi3EJTaUNxeNvdYCPj0BKRNJLv183GrCQbV+L1mImGRRHdzRbQ3YSYaEPFZTWzuWUt3yI3iNrKlW0NMMRAJmOiJWlC8WoJ+A/GwkYDDTjJi5oEeJx5RJBnTkQw78TmMRBQdileP12amJ2EmLJkIelxs7tHjd1hQPBYSESMBp46IpCERshD06NgcNxAPdeIXbWxOqogqm/CLDuIhLYpkICC10d2rxeu2EPBriUb1uBxagrJAd28XbncXyaSW7ngXQY/AyOBeHthsx6RfzS9/+Su+8uU5jPq7sRlUvPTCl6k0ykS6w5f8ffiDPtwBF6F4kG9/549C9Grp0yhEf/zjH+N0Obj73ru4fcltLFl2N/evW8mmjo1ojOorbpDRC3o0Zg1qkxqNWbO4oqebX8VbQC827TRmDTpRj9aiXbS9Hq7m73q52krn79L+arFoLdpLuFo/v5c/obntMnQtjnWh7mrjvnxOFnxdfKw6NO2sa1nL0pX3cvd9d3HnvXdw97K76B/q+0jnysedPnYh+rOf/Yzde3bR+2DPoviMdkeIdkcuEZGXiMPYhwRjCnJEWhSiC3aXt/1duFxcXFuIXrQvKqNEpEvqL96/IBJ9smcxTiUqN/PxIB7JvShSr9b/9bBwDWkkEWbzg71seWgzyS0JNj/US2Jzgmh389osSbHj9+kxGzdht6roScjs3rmN7PQkU2PjTI1MUEgVyWdyDA0cYnN3DJfdgkHXxZpVy+hoXY/DZkbV1YJW3Y6mq5XOtvXYRQOJqMyObY+QmR7jWKPCbK3E1PgQO774CA/0JhFNBlQd6/C4ml9oXt86/D4VDns7TmcLWlUb3bEQ/Yd24rZbMOraCUfaUWQzDsdaIrEWXHYjAb8Gr1uP02oiKOuJhtUEPAKxiB4p0I7LaiIUbCcoGQh4jCSjVmS30LzBQ9bhdWsIBY1E4wac7i4CAR+yFCEcCRGa/2FxMXJUQolIKFEJeZ7LbZSojBKRCYT8KDF58cdJQHIRVWSWL70Hi7CM//Z//+985jP/G97AUv7T//m/0NJyE8luCz6nCcWjJyx1EXSLRCQdin89ikcgEWkhGNhIyN9FPKLCZVfh9a8lHNbh8wgocvPfpm6nEUlSIynrcbu0KAE1sq8Vt2MjLkcrLmcXW7cGGRjcRzozycTEGFPTU2Qz00xNDLNn13ZiYQmzUUNXxyY0qjY6WtdjMqixCgY2rruf9tb1GPVq/F4HDz/Qy8Dh/RRy0zxzrEEpn+bwwT08uLWbYMCD1aLBKnZgs27E52vH5WpBkrT4vAY8DhNmvY6+/X1s3RzBbjXgdVsIhjfg9+qR5A5C4Q68LjOKbCYWNSP7LIQVkUS8eQNNUNKgSCocgoFEzIDk1+J1NlcNZakNj91IIq5B9nch+6z09urwuTUEvFqSCSNhxYjsE0gmdM2blzwCwWALXocR2a+nt8eCx9lJNKSjO2HF7+lCkVsIKm147AKbt3QSCKwn4LKRSOjxeXTIcgfhiBq/R0SW9ISCOtwOPbGInWi8A69bS2/STDRgxitq6U2uIanY8Fo72ZzsIiKpkF1dJMMG/K4OAl4ViZgBr0MgEtKSiJnw2i10J3WEZDN+t56grCbgU+N3mUgmDMh+LbLXRk+PloDHTMCjIx7T47Z3EJZU9EQFJHcnyYiKeKgd2S7yQK+GkLQOyW5lS9KEEjASCHQQiakIeK1IAQOyrMHj0hMO2ognu3A6uojFdHQntCg+K4N9u9nS60K0tPCrX/8PXnrxOQTzCsy6Tl58/mWqM1UiyfDi52Rw/se5y+8knAjx7ff+KESvlj6NQhTg0Ucf4b6VS7n9ntu49a5buPmOm7j5jpu49a5buO3uW7nt7lu5fclt3L7kNu5cegd33ncnt997O7fcfQufv/3zfOGOL3DzXTd/yJ0384XbP8+Nt9zIzXfexN3L72ZNyxrURhVas3ZRoP4m1Cb1FVxPu4/a9pqY1JfwUeNb9GnW0KXvYvna5dx2z2187rbPccNNN3DjLTdy0503XTqv83N765JbuWvZXSxZsYQ777uTW+++hduW3ModS27njntu57a7b+WWO2/mrqV3csc9t3PvinuQwxL/8I//8JHPlY8zfSLPEd27bw/dW5NXiMirib/LUaLNL355XgQu1F1NYF6t/bXsrioyLmOh/cIH6sX1F4vVQMhPJBnmgUcf4OUvv8xff+OvefPtN3nr7Tf5+l9/nW/8zTd4bu7ZRYF6tTFeL8ktCY6MDlGsFMgWMmTyaSr1Cs+dfo7X33ydrQ9v5v41SzGZ2tm/bwejo30MDR5gsP8g2fQU5WKeUiHP1MQk/YcP8cbXXmWo/xAPbenh7TffID01zt6d23n7zTc4vG8PY0cGefWVr/DwQ92US1leeOE8W7fEee7ZE7z1xusM9B2iXq1w/OhRquUKU+MTHDq4m7Gxfl5++QUOHX6cfH6UN974Kx5/vIdatcyJ40cZ6N/PmdOnOHv2FLv29PLVr3yJmdk0fQMP89Zbb3L2zHH8PpGhgQGKhVHGRnfz6iuvMDa6i9nZNK/91SuMjGznwvmTvPTiBQYOP8WLz5/jwrln6D+8jddff4VqNcXh/idQQjbWrV9Ne5uKQ4cP8633vsW7X3+Hd7/+Lu98/R3e+fo7zfK77/DOu2/zzrtv8+7X3+Htd9++lHfe4q233+LNt9/kzbff4K+/8XXefuctunvitLe2svr+lcQTInNzJ3j22RoHDnczN3eCfP4II2N7ePWVrzJTTVPI9PHm668xdmQntcoRvvbqV+g/1MuFc7N86fmT7Nwe5dzZ5zh7foa+vif4q69+lWp1momJA7z7zjtUa+NMTu/la1/7K4YGdlEujvPSi2cZHtrD4MDTHBnax9jYAPlChlKpwNDgAF979RXq5SKPPLCZl1/8Eju3PcH4yBDvvv0WB/fuIj05zuuvvcqTjz7Eqe9w7lAAACAASURBVJPPcOHcGR7qTXK0Uaecz7HtkQd55eUXOX3yOLVChtlKkUqxwNjoAPn8BNuf7CGXH+GrX3mBvXufYGjwABvWrWLVipXs3bWf2UaZr7/7Di+9eJ7kZh0OpxrBug6/1I7Vqsft1hOLiIjmLiS/EUXpwmrW4/N0EZR1WC06QkEdimTCYesiFFQTCGzCJnYRCrfj97dhEzuJJbrwuruwWTcRi2nx+VQ4bCricQ0edydepx4l2ILTrvn/2zvv+LiqA9/rT/56n7zsJuHt25c44KJe3I0L7pY0GvVeptzeps9oxnKRwQ0bN1pMIIlCIDGE2MRVtoGwAbKGFLIhhbx88sCWbORGnCy7yyaw+31/jDSWkBwMMbZCzvfz+X3unTvnnnvm3DNzfnPuKahKJbFYI56OUkKheoKBelpbFmFapZhWKW1NVQRCy9D0pfg99cQTjRh6M7LqIhpvobW5Gr9Ug2k10NFeg223YzoV+Hw1RMINWGoNcnsV0ehCbLUBxeMiEa3AUMqRvaVEnFpUvwtZchEM1iB56rGsSiLhRtpbqnAcF+FQK+0tZQSD9Rh6Fa1N5YTDtciSC11uIRqrRpHq0NRaHKeSjrblhOwaooF6FG8ZQdtF2CnH21RNIurGNpbQ3uAmGqrFMpvx+suIJVpoa6vB43ETCrfR2uJG05oJRWtpaSknGGzANFxocisPPrCDzoREY8NyAF75yQtUuqdTV1XOKz/+F/Z8ew9O1Eaz1Uwjgu5o+FQvRkDn9TdeF0Z0DMajEX3mmWdYtnwZ8xfOY/b8WUydVZIxnfkleeQV55JblENOYTa5RTnkFeeSX5JHwdR8CqYVpLdT88mfmkd+SV7mvfefc/vSBZmR20N9GIf3Px0+6CfTNeB93QPGGoQ0lpo7mkbpas8dS00djWPGOVxNg31l/1w8Da31NA72wR3qtznUgjlt9lRyinKYkj+ZyXmTmFIwOZN371ducQ55Jbkj7s/wPw/FM4oomVlMycxi5iyYze3LFvDEd574i8vKteaaG9E//elPbNy0gWA0kHlMM/Roc2h/SIopI+n+UfJrPmRDGhFuLA2P64PCyoY0QqqljErPUHpVSxlxzvvTNtTSmVqT5Pd/+P2Y+XDxrYuYQQOf6h2hoc821ueWdP+I92RDwq/5aPE049d8KKaMairojkZ8ZYxkVydGQMewVdasTfGtbz3C17/+MA88sIsHH7yP7du3EI+HeOihL/HII18jlYzz0g9eYPd997C2K8mPX/pnHti1g3u3b+UX//JT7rl7K7vv2cmh/ftYvSbOM88e5tixQ3R2Rti77wn27HmMSCTI4cOHuf/+L9G9dh1f7/kGPT1fY8+eb/D0M0d4/ImHOXjoSV7+4YtsvmsdPT1f45GvP8Kundvo7e3l8JGDbN3WxfGnj/CNbz7I/Q+u59VXf8Z39n6TlSuj7N37HXbv3sFDD93Ni88/zwP3b+HQwcd55vhx7rn3To4c2cdz33uGe++5ix+9/AOefeYwu3bcwSs/+QHfeGw3PY/cSzxhU1lVjruymm/uefwvLdKjWNu9Gst0sC2HzpTBz3/xU577pyPsuGclP/rRCb6552G+9vX7eO2Xv+DhBx/g6195gB+e+CFfuncb+/c9yis/+jG7dqzh2JG9HD6wl80bkvzgB9/n0OHH2bHrTl588Xl6HnmQLz90D7/61S957JsP8tWe7Tz99HHuv3cnX/3Klzh8cB+PPvIwDz10H/c/sIP77tvBI9/4KnffvYVwOMA/v/h9HvrSA2zoXs3z33uGjevW8shXHuJnP/kxWzet5ysPPsD3nj7G2q4kzx7r5fnnnqV7VYqnew/zlS9/iYhj8nTvEe7ftYOtG+/k8cceZctdW/jqVx5i377HeeybD/PdA9/k2e8doqfnQZ54/Js01NeyaOESNm7YzKFDT/H66/+P/fufxK+WomjNtHvKaWlfgmH40fRWJLkGn7cBy2xHUSuxTRVdb8DjceH3teLzu9G1Zhy7A0WrQFbLsMw2ZHUFsuJCkRvRjFIUpYZAoBXdqERWapCkRlTdhSzX4PHU0O5ZhK63oap1dHiW09y8DEWtwOd3YRj1KFoZrW234/c24fHPp7l1Lj5PA6rupsNTg0+upMNfhiS14pPqqWtYTktbDX65HlmvoLnFjSy7UaUaDKUJTZ+Hp60C2VuJIi/G07YMn6ccyVeKKleh6XV0eJfh9dSj6VV4vKXIUjOq7sLnq6Sjo4q6+nn4fBXIUiMe7zK8Xhcd7TXopgtZakTTGmhuWUhL83I0pRJv+wo8baWoSil+72IUXzOytJhIpApT7UBXK+joqKLNU45XKsfnb6bDU0NzSxmK2kaHpxaPtILmlgp8fjeS7EKR22huqsTjqaCxsZSXTvyATZu6qK1bQJW7lFd+8i/84lc/557du3h0z6O88M8vsHj5IgxHx6/50qPmRYvomIw3I9rf309LSyuLFi9iwcL5zJo3k5lzZ1A8o4ips0qYPmcaJTOL00azJI/CaQUUFOeRV5BNbsEU8gtzKCzJp2hqAcVTC5g2o5ip04uYPmsqJdMLKZ5WQNHUfIpK8mlubUBSfciaj1LXcspcy1lethRXZRl1jdWUV6xgRfkySl3LWVG2lLKKFZRVrKDcXUp5xQpKXcvH1FC4kVo+hkaHKx9DY17DNTq+FWVLWV62hDLXcpatWIyrsoyaukoqKssod5dm0u6qLKPcnb5eQ3Mdy0qX4KosY0X5Mppa6lENGd1UWLpiMYUl+UydUURBcR4l04sonlZI8bRCiqYWUDK9kJLp6f38olxy8qeQW5BN8bRCCkvSxr9kZjFTZ5UwdVYJM+fOYNa8mcyaN5MFS+bR4mmhr7/vI5eVj4NRRnT27NlkZWWN0sDAlSdVB/jjH//IhQsXGBgYoGt1Fz7FS7u/jTZfK+3+Ntr9bXRI7SP2x1K7v41Wb8uoMB65Y5SG4hquscJeKVyH1E6rtyXzL2b4P66hY0PHh2voHI/Uzvdf+D5nz53l3PlznHnzDH39ffSf7ueFF5+nQ2ofNdLwSqseDPXpGP66tind38NVXU5tU02mb87Qigo1jdWYIZO161azenUXW7ZsZv36O0gm46ztXk0o7NDW3sjOXVsJRx0CAYN7dm0j4JisWZ3inl07CAVt1nWvZse2rcSiQTZvWs/GDXcQjQbYsnUj6zesIxxx2LDxDiLRIE7AYPPmjZiWjqJIbN++A00zCARsNm2+g23bN/LAl3awc+cWulYlSSWTJJMpUqkkW7ZuIZlMsHZdhHvv20EsYbJ5axfbt91NNOawbdtdbNmyla5VCbZvv5MNGzbQvS7FfQ9sZf2d69mwcSV3b9vIuu617Ni+iYcevI/VXTF27dzEl7+8kzvWd7Jj10b8Sht1DTVUVLl58KGHOHfuHOfOpzUwMMDA2bTOnjs7Yn9IA2cvb9//Xv+ZfjZu2kh7mxdJUtmwqYt779vB6jVxtu1czZd238u6O5Ns37mRnq/1sDq1hq2bN7N1007uXHsH27duZm3XHWy9606++tBuNm/YyLatm/ja177K6rVhNm9Zy86d21nZFWfb9s1s23430bjFlm2r2b17N2tWr2VVVxebN29m2913s237VqKxEB2eVrZs3UQgaGKYCvfcswNdk+la2cnO7XcTDtisv7Ob7du3EgrabNpwJ3esW0MqGWPTxjtJJeMkO2Pcf989xGJhwiGbe3ZtJ+CYBAMmGzbcSXNTC7FYjLvv3kIyFWXDpjXsfnAn9963nQ0b7ySeSFBX14hhmARCOkd6D/D4E48i69WoegdOyIPH7yYSc4jGdSS1kUjUIhw10M1mOjujROIqXn8d4bCNYbfhBCVWr4liB9ox7SaSqSC61YBmNJFIBrECjehGO913xLACbZi2h1g8gG41YVpedMNHU8sySssW0dhcQUubi0VLZtHcWkZLm5vlpXNR9HrKXHNYtmwh7d7lrHBNp7RsKZJSi8u9lPrGFXT43CxZtoCW1hrqG10sWjyPdm8d9c1LWLZiAbLcQFXFYmqrSzEsF3U1K3CVL0SWKykrvY0q9yJkqZbS0rk0NLlo7XBR7lpGS5uLto5KSkuX4PG5qWsoZ9myBbR1VFJRuZjaugr8Si3LS2+joaEKr+Rm2bL5dHjqaGl3sWTJbJqbS2lvc7N40QwkqYaGhsWUr1hCZeVs2tuXUVddgarUU1m1HHfVInxKNcuW3059g5vW9hpWlC3CL7fQ2lHKwsWzkdVGahsWs3DRbcxfMBOPr5bS8gXMnTeDmbPyafO4cbtLWbNmLWvuXMOqdV3ct/tedj+0m/mL5xOOh2jzteJVPLxx6o1rVqndfPPNo+qlm2+++ZrEfb0Zb0b0+PHjVFfXsGTpEpaVLmXxikWUzCxOP4IfNDVF0wszj3pzi3LIzp1ETt5kCopyKSrJp7A4j4KiXAqL88gvzGHq9CLyC3MonlpAUUk+U3ImMnV6EcmVcWKJME7QzJz3j5//X+QVZLNk2UImTbmFSVNuITdvClNyJjIl+1YmZ99KXkE2t0z8AhMnfZFbJ00YpYmTvzhakyaM1hjhxorvajVpyi2ZeG6Z+AVy8iZTVJJPbv4UcvImk5M3mbz8bPIKspmcfSvFUwtYuHg+//j5/8XkKbeQmz+FJcsWEoo43Lm+m5a2RnJyJ5NfmENBUS7FUwsoLM7LbAuL8ygqyc/kXVFJPnkF6fiLStKtoEUzijJ/IoZaRecvnsey8qWUulfw7b1/vlX0hhvR3bt3j/qyl5aWfmBElZWVrFq1inV3rCOZ6iScCI1QKB4kGAsQigdHaNQApmF9Sofravt+jnVuZhDTMA2lR7NV/JpvTA21gL6/xXLomGLKhOJBUmuSJFd1El8ZS3/eeCg94t2UR7SE+lQvHrljVCupT/XiVTwZ4zy0P3TO8NdDx9p8rZk0TZo8CUVR0XUdRVFob29D11WcgIluyJiWimkpaKaMZuuoloZiKBiOiWZpSLqMZhuoloakSZiOhWnaaKqBZTmYpoGqKui6gqr70XQ/mu5F1b1YloEkKXi9XhTVj6LKqJqEaWlIkoSqyui6idfrQ1VVDFPHML2YloZu+FH1dhRFQdX8WJaOqunopoakelA1Dd1UkTUfumFhB3VkVUJSJAxTwTJkDE3G0CV0w4th+TFMGb/iwad4aPO1EYiESa1OkVzdSeeqBImVcVJrUnSuSve57VyVILm6k9SaJKnVaSVXd2a2yVWddHYlSHQl0ttVCeygg88r4/X40Q0J0zTQDRnD8qEbKoYpYdsapmmjqzaqomLqQTRFQ1MldMVBVSUMTcMyLAxDT4c1fai6B8Mw0HUVTVMwTQPDkpCVNhwniKwYKIqBqplouomqqui6hl/yYFgqpqWiGxJWwEAxVWRdRncMFENF1tP3XDFVFFNDs3UUQ0Ux1HSZMFV020CzdGRDQbU0ZEPBr0kouoIsp2UYOn6/B0n2YJgKqiajKDKTJk1C1w1kWULX/azs6iSZimI57fikVhS9FSfow+NtwbT9OCEFr78NzZAwHT9+2YsVULCDKqajE46bBMIGuikTiTuEYxamrROK6thBFSdoEU2YGJaCbinEk0GcoIXlWAQiBnbAJBQJE0sG0E0DO2gS7wyhGSqhiEUsEULRJWKdQYIRA1XXiXaaBCM6umUS6wwSjgSwAxKJpIluSASCJonOMJouEUvYRGIKlq3R2RkmGLCxbYPOpE4o5GCZGqlUiGDQJBg0SaWiGKaCE7KIJ0NYtk0gbBJPRtANk3DMIpoIoxoqnakoTtDEciw6V0axAgahcIRYZwDDNAhFAsSTYUxLIxROx23bOp3JEJGoia7pxOIm0ZiBYzukUlFisRCBkELnShvb0QhHbFZ2xdF0P9G4TSJpYDkanakg4biGYalEYkFiySCBsEkgbBGOmYTjBvFEhESqk3AinBlcOvQ7rzsaNY3VtPla+e3rv71mlVoqlRpVN6VSqWsS9/VmvBnRf/qnf6KqqorKKjfLy5dRXlXG7PmzRjzaLRx8/D702L2wJG+EMSqZVsj0mSWUTEu3iBYU5VJckk/x1ALyCrLJzp3E3HmzKHMtJ68gm5mzpjJtRjFTciYycfIXyc6dxNTpRUzOvpXc/Cnk5k9hcvat5BfmkJM3idz8yUzOvpUpORMzBi+j3ElMHjSsw5WdO2mUxgyXM3FUuFHXuIJy8yYzacotTJ5yS9o450wkryCbgqLcjAoHNXR85uxpTJw0IW1Op9zCnLkzKSjKZf6COZSWL2PGzBJy8yanzeWgCS0qzkvn8YziEa8Li/MGW6ALKZmW7kpRNKOIkplFmX69xTOKuH3pApaWLaG+pY5v7nnsI5eVj4NRRvTSpUvcdNNNI77sPT09VxXRpo2biMVimLaBaiqZx9zDH3UrpoxqKZnH3lfzGP1Kj7LHCnc15w49Hh8ylX7Nl3lMP9bj//ePuB4aIapaSnrwiq0iGxK6M+wRv61kzh8en2qlH62P1SVg+GcfCjt0fHhXBJ/qvWySDYmsrCxUTcMn+dGM9JKphmWgm1p6KVVTQzcVVENBcXRkW0MyVSRLxW8q+AwZn6Hgt1S8uoRkaKiahWEE0XQbSU4vTaoZKqohoZl+NNOHZnjT5sd0MEwrfQ3NRNElJMWPplvYjoFuGCiagmaoGJaGbsropopuychqB5qhYtoaqi5h2Ca6nZ4pQDEMNFPHr/jQLBPN1pANFUlTkFU/quJNmzxDx7Rk/HI7sqqgW+k/AZIhodkWRsAYlYeZrhmOmpkdQXPS9y0zOffg1q/7MvdBczRUQ8UwLEzLQtEkdCO9PKuiXzbimqGgaiqaLqeNu6Gg6RKa4UfTFRTNe1mqf3CJWxnN9KObGqquI8kKlmOiWxK6KaNoBrJuIxsWPkVH1nV0I71imW6qGGb6GqrmQzEVJEtFMtX0/R6815Kp4jNk/KaSufd+Y3DfTB+XLBXJ1pBtLRNGNtR0uTLTq4PpZnrJXknxI6syhmWSlZWFaZnYARNZ9aLqEnbAQDU86JaCX2lHt/wYpoKi+1FNCdmQ0W0VxZSQDeVyudYkfKpncF9GMVQkTULW0obZp/rxqwqy7senSPgUCVlXkTQNv6qhGDp+Vcen6PhUGVm3kDSddp8fWTdQdB2/qqAYBj5FRjV0DDuErCsohoZq2vhVeXBZXx+a6UUzJFRdRTf09H03/RiWD1VTkBUFVTNQVQO/5MEvKeiGhaIqaFr6D5aiquimhV9R8UgSsmYhaRo+RUHSTBRdR7MsFMNAMXQkVUNSdVTTQNEN/KqBX5VRDAufouHx+5HUdLySJKMbBpIkpdOimmi6hqopSJKGrKQ/ixXQkNS2dFkzVGRFQdFkPL5mVKMDzVBo97YhGz6MgIFf8+NVPOmyb13uTuXXpPR9GXztU73IhpTp469aCl7Vy69/8+trVqn99Kc/HWVEf/rTn16TuK83482IvvDCCyxdupR58+cye+4sZi+YxbxFc1m8YhFbd2zFCppMnVVCdsEUJubeyuT8yeQWTGHylFu45dbPkzNoMrtWpXjooQfZtGk9c+fNYtr0IqbPKGbqtELyC7LJL8hmSvat/MP//iyf/dyn+cf/czN5+VMoKMyhqDiP/IJsikvyyc2bxKTJX6SoJI/1G+7gq199iIcf/jJr1nZRWJRLbu6kkRo0hMOVkzvpirqasKOucQXl5U/JxJmTO4nsnInk5U8hL39y5r1Jg62zhUW55BdkU1CYQ8nUAopL8pk85Rb+9z9+js989n9y68QvpA1r/hQKi3KZNXsaJVMLmD6jmOkzipk0+YvcOvEL5OVPIb8gm+ycieTmTUZR/TzwwL3sumcHu+7dyf0P3s9dd9/FouULmbvwNuYsmM2cBbOZNW8mpZUreOSxr3/ksvJxMGYf0ebm5swX/aabbuKdd965qoj6+vrYsHEDoUgQMzB64M3wlsyxBgL9ucE8Y5nBqx3wM9SBfriGGxLNVkeE/SANGVEnYmMEdFRLIZqMjIh/eFjNVkb0lb1SnJqjpnUF86s7GqqtZMKn89MiKysLO+TghANoto5mGRiOjeFYg7IvK2ijB2w0x0S1DVRLR7XNQRnp45aJYtiYThjdclB0fVg8JkZgKJ80dFtFNS1UQ0ezJHQziBU0kHQJWTPRbRUzYGIGTAwnPSm/bqvojpq5h5qtopoymqWg2hqak27N0xwDM2SjWjq6k06rZhuoto5iyunWXiOAZQVQdQnT0XFCUZxwFMVWUBwVLeAMtgIrI/JVHeOejFVGdEdLT+M0+IfDDBrotoYRMNEsHc3SB42Lim7rGWmWjm5raLaEZvvRnMGt7ccIKhgBGX3wWPqzG2hWuqxolopm2hh2EN3WsYI6hqOjWzaKZSHbFlrARnNsjICN6ZiYto7tpOXYOoZjoAcsdMdKbwPW4D030WwT1UlLe99r1TbRHAsjmI5bd6zBMOl7YDhmWraFPrT0bsBCs3SysrLQbA3NUjCHlW0raKUXYhg0/Hrmj4CGFQpgBG0US0cPmOgBGzsSwI4E0BwdI2gTiIUxQw5G0CIYC2NHgphBGzNkowcsrFAAM2RjBALYkQhGIIhq2aiWjWY72OEITiSKGQoRisexQiE0eyj/Ami2g+44mMEQZjCEEQigOw66E8AKhNNPDmyFQNTBdILoVgAnHEB30mXbDoYw7ACGE8BwHMxAENMJYAaC6LaDbjnoloVu2+lrhEKYwSC6E8ik0QyF0ttgCCcaRTZMdCeAEQigmBZGIB1eG0yXEQgOKoDhBDEsG2vwesOvbdgOViCAYQewAiHMgI1iSlghA81KlzEr4KCYfgxHxwoGMRxn8N4bg/fFwgw66M7ganchBzvsYAbNTEvo0HfECOjp3/iIRYunmZ/9/GfXtFLLzs7O1E3Z2dnXLN7rzXgzos899xzl5eXcvnABCxbOZ8782cxbOJcVruVc+v0lgpEgRTMKySnMZlLORCbm3Mrnv/APfO5zf8dnP/d3fP7z/0Bu3mTuuXcXAG+//TZlZcsoKslj8eIFtLU3UVPrZsmS27ltbtqg5uVPoWRqAQsXzWPe/NnMmTODefNmM+e2GUyfUUx+QTa5eZMJhhw237WJu+7ahBMwKSjMISd38vt0dYbziqZzzHBXq0kZ45ibN5npM0twu8twVZRSVV3B7QvnUlScR1FRHrfNTc9tPXfuLG6bO5O582Yxf8GcdOvm1ALmzJnBwkXzWL5iCQ0NNTQ01DB9RjEzZ09j/vw5fOYz/5NP/93/YOKkLzJlyq3p680opr2jmT/+6U8j7ukf/vAHyqvKuO32OcxfnB6ANn/xPFZULOfRbz36kcvKx8GYRvSpp57KfNmbm5s/VEQ/+9nPWLkqlR55PmzezaHH4cNHkY8wjKGRo9dHGNPQoBENpPXnTKIZMkbJCI42GUPT9QxN3TPcEL7fUI5lboceQQViDtFUhDV3ria5upNEV5xEV5z4yhjxlTGinRESK+OZx7zxVCwTZrjiK9PHhx4hD52f6IqTXJU+N9EVJ5aM0rV25YiuDllZWdhhm1gyhhMJEEsmiKdSRBIJIonkoFJEE0li8TjxRJxYPE5scBtPJEh0JojGYnQmO4nF40TiUSKJKNHOGNFknGhn52B8CSKJzozCnSEiiRjRZIxoKkgk3kU0GSGajGKHYlhhnWA8QCQZIdwZJJQIEE6EiKUig902IkRTYYJxBytsYEdNwqkY4VQMJx4g2Bkh2BnFiQcIJSKEklFCqSjRVJRYIkIi1kU0miSRimMFLBQ9iE+18Oo+fJYPIxpGcwzCiRDRZIRgLECkM5zJ31gqSiwZHUxzhEhneITC8WBmP74ylplRQTL8g9N1hXAiQcLxCJHOBLFUnEhnjFA8RCwZTZ+biBDpTC8WEIqHCSfCxJIJYqkEsWSMSCJGJBEn0hklkgwQ6QwR6UwS7Uzf52gySDwVJxCNYMdD6FGHcCpGqDNCOBEmEg+nH5UmwiQ6I3QmIsQTMeKJ+PuUuKISnZ3D9hN0JjtJdCaIJ+JE4zGi8QjRzjCRzkg6nZ0x4qlOnEgIPZD+c5KVlYUZHJwSK6ATXxljzZ1rWN3dTVf3KrrXd7PmjrWk1iTp6l5F17q1rF5/B6nutSTXdLPqznWkurtZ2b2WrnVr6FyziuTa1axev5Zkd4pU90pWrV/FynWrSHV3kepODdumSK7tYuW6Naxe340dDWHHghhhCycexozYaEGLUDKGYhvItoEeslEcEyMcRLYNZFvFCIdQgzayraAHA5iBMKploTkaZtBCs0NoZhgzEEBzVBRTx3CCWMHw4J8oDSccwQ4F0GwDw3FQDB3F1DACVvpYOIAVDaI4OoqjY4Qc9KCBGrDQQzZqwEQydbRgOs2SpSPbOkbYQgtayLaKHrKwoyH0YPrPhhVyUC0DMxjAcOx0Wiwb3bExAkPHQyiGiWprGAEDzQpg2NG0CQ+ZmAEbww5gBiOojoMaMNNpCDjoQQczEsIMhzDCIYxwAC2gozlq5nfIDg/NeqLQ1N5IRY2LH/34h9e0Utu8eXOmbtq8efM1i/d6M96M6Llz53j22Wd5+umneebZZ3j2e89y7Pgxnn/h+/zpT3/i1Z+/ysFDBzhy9Ai9R3vp7T3CwYMH+O7+p9i//7t897tPceTIYX77298C8O677/Lss8/wxLcfZ+/e73Ds2FEOHjzI008f4+jRXh5/fA+PPfYoTz75bZ544nG++92n2Ldvb0a9R44Qi0VZsGAe8+fP4/bb5w/uz2X2bbOYedv0UZo1d8YozZw7fbRumzZKM+Z8dM2aO4M582cxfXYJt90+m0Qyyr/+6x94+1//lX/7t3/j9df/HwcPHuCpp/axd+932LdvL9/5zpN8+8knBo/t5fHH9/D449/iqaf2cezYUY70HuHIkcMcPnyIJ598gn379nL0aC8H9u/PRR3dHQAADtlJREFU5PXhw4c4cuQwx48f45WfvsJ77/3XiHv6xz/+kedf/D5Heo9w/OnjPPu9Z3n2e89wpPcIfX3jfLASpCelH+oY3tvb+6Eieuedd3ACDo2tDdQ11lLbWENNQw31zXW4Kssonl5Edt4UZsyejrvGTWNLA/VNddQ21lDfVEd9Uy0NLfU0tjak1ZJWQ0v94Pt11DXWUtdYS31zXebYkBpbRp7X2NpAQ0sDDc31abXUD9sfCldPXVMtdU111DbUpNWYVl1jbTru5rTqmmppbGmgqbWRusZaVq5eySOPPsLZc2c5f/7ciAEwA2cHOPPmGQYG3hw2EGZgTJ09d5az5y8Pjjl3/hxnzw2+N6iBswMMDLzJufPneHPgDA/svp+Vq9P9pnbcs52nnznOL375C071neL0mTP09fWPob6M+vv7Mzrdfzq9PZ3e9vX30dd3KjP4qq9/rLhOZ87v6+vjVN9JTvX1M3D2Tf7vb/4vd2/fyfpN6/j5L17lzYE36es/Oag++vv76Ovv41T/Kc6dP8ePf/JDVMOPV/XwjT2PcfrNM5zsO8Xrp97g9ZNv8PrJ1znV10ff6T76TvfTf7qf/v4+Tvefob//NG8OvIlP9pOdW0zJ9DnctnAuelDn+y++wC9+9UtO9p3kzJtn0ued7ufMmdOcefM0p8+cpv9Mf+Z4/2Da+oelsa+/j9NnTvPGqTd4av9TrFvfTVNbA1//Rg/PfO9ZXvv1r9Np67+cd6f6Tg2L8zR9/f2cPHWKN06e5FRfH/2nzwzqNP2n0++ndWrwmv2DcfbR13+KN988Q+/Ro2y8ezPf+s7j6XjP9A+m8VQ6vZl7e2rEfc7c777+K+p0/+nLr/v7OT2sbFzWUP6n03X23Fm+9fge8grzqKiqICsrC1n388ijX+fVn7/K6dOneet3b3Hh4kUuXLzAxbfe4sKFC1y4OKSLXLh4kfMXLnD+4kXOX7zIhYtvceGti5y/OHQsHfb8xfODx85z4a0LXHjrYnp78QIX3ho6fpELb13k4u8usmrdGsprXJRWlVJeU8HM+TPJm1rA7AW3UVblwlXjxlVbibuuCldtFeU1btz1bipqq3DVunHVllNWVYG7ugZXVSVVNZVUVFdQUVVHZXUj7upqKmsrKHe7cFfX4K6poaLKhbvGhbu6ispaN1W1lVRWV1FRVUFFVQWVNZW4aytx1bgpr3HjqnXhqqkYTIuLitoq3HVuVlSVUl6dDlNRV0FlfRWlVWVUN1VTVlWR+UyV9dXpuKpcuCpduKpclFdW4KqsoKKqnMqaKtzVlZRXluKuduOqrKKiqoqKKlc6bTX1uKsacFVWUlOfDutyV1JeWYOrpo6K2mpKKysor66ioq6GitpqKupqcdfVUVFXTVV9FdX11VTWuKltrKG6vorFyxZRNLWQkunFLF2xhBMvnbimldrAwMBVD6Adz4w3IzoeOXPmTV566SVefvllXn75ZX784x+zb98+auqqWepaMkpLyhePlmu0FpctuqZa6lrC4rJFLClfzLKKpWzcsuFGZ91fzLgwogDhcJibb775qh7LD4/oP//zP+nu7say0gMpZFnC7/fj8/tobm5mwe0LmD59GkuXLqW1tZX29nZ8Ph/t7W3IsoSiyGiahqapqJqKqqpoqoqmaaiqitfnpaOjA5/fl5ZvpPx+P37Jn94O7b//td+PJEl4fV48Xg+yLGFaZnrQjKqOkKIqKMpwyciyjF/y4zjODf8xfPnll8btD8y7773Lu+++e1VhT558g4aGerw+DwcOHvhI10skEtxyy63Mn7+A1rZWjh8//pHi+SB+/urP+e53n/pY4v4g3nvvvRty3SvxyiuvMHPmTIZm2+juXnujkwTA2rVr8Xo9eL0eGpsayc6ewmc++xlmzZpFh6eDDk8H7R0j5fV5ryzv0NZ3WcOPD+17PYOvPcOOeccOOxjG4/XS4enA4/Gkt14Pbe1tg6/baWpqpL2jneaWZlrbWvH6vLS2pX87PV4vHp8Xj8dzWV4PnsF40scG42xrG/Z7205LSystLS20tbXT2tpCx2A+tLV30NHhyeTTkDxezyh5fT48ng6i0Sib79rM7Qtv5wsTvsCtt95Ka1srr79+7ecRXbhwIQsXLrymcV5vhBH9aJw8eZKWtmZKK1ew3L1s3Ki0agUVdS4qG9xs3v7X21I/xLgxoidOnCAcDn/oiN59911OnDjB0aNHOXb0GL29vWkdSW8PHjzIoUOHOHjwILt378axHWzLxrIs7rrrLo4dO8bRo8c42nuUo71HM+cfO3aMA/sPoCoqbrebqqoqXC4XFRUVH1oul4uqqirKysqorKxk3bp1HD9+fPDaR9NpP3Ys87q3t5cjR45k0nLkyBEOHz7MM888w3/8x39co1vx4Xn11Ve54447yMrK4umnn+ZP7+sj8tfE+fPneeSRR3j00cf41a9+9ZHiOHXqFFu3bmHpkiU0NzWzZ88e/uu//uuDT/wQ/OY3v2Hbtm2EgiEOHTo07ozh9ea9997jueeeo6Ojg6ysLGKxGCdPnrzRyeKll15i7969HDp4iCeffJIHHniAXTt38fDDD/PUU09x4MAB9u/fP0IHDxzk4MEP0oFBXU3Yq9eBAwfS1z+Q3j9w4ACHDh1i3759dHV1Yds2pmkSi8V48sknOXToEPv37+fQoUOZ36Oh7eHDh8e8xuFDhzhw4ABHjx5l9erVNDU1pc1pWxtf+cpXMuceGkrPsLQNf33w4EEOHjjAkcNHMu/98he/ZO/evXR0dFBZWYnb7ebhhx8Grn2l1tPTc1UDaMczwoh+NF577TWaWpuobqqissH90dR47VTV6MZdX0FDez2u2jJqW2vYsGX9jc6mv5hxY0QB3njjjY8c0dXw3nvvcf78ec6ePcu5c+c+0NT993//N93d3UhSupVVluVRyrR8foA8Hg+SJBEKhdi/f/+HTvt44OzZs5w8mZ4wur+//6pbHz/J/Pu//zsXLlzg3LlznD179pobxQsXLtDX18fp06c5efKkyPNBLl68SFZWFmfOnOHSpUs3OjmfKN5++23Onj3LhQsXeOutt65ZnH19fZw5c+YD+4tdLb///e85f/48v/vd77h48SJvv/02cO0rtUuXLv3VlzFhRD8av//973np5RO88OLzvPCD8aHnX3yeF37wAi/+84t8/4Xv89qvP1pDynhiXBnRvyQiwfVD5L1gPCDKoWAsRLkYjTCigvGMMKKCD43Ie8F4QJRDwViIcjEaYUQF4xlhRAUfGpH3gvGAKIeCsRDlYjTCiArGM8KICj40V8r71157je7u7r/6jv2C8UFvby+GYXDixIkx3xe/AYKxEOViNMKICsYzwogKPjTD835gYICdO3dSXFycmW+vu7v7xiVO8Imhp6cnU6YmTJhAd3c3r732WuZ98RsgGAtRLkYjjKhgPCOMqOBDk5WVRU9PDwsXLhy1FrMwooJrxXAjOlzFxcXs3r1b/AYIxkSUi9EIIyoYzwgjKvjQfPazn8Xn8/GpT31qTKMgJPRx6qabbqK5uZnPfOYzN/qrIBiHZGWJuuH93Ig8EfdBcLVc77Ly/usJI/pXzp49e2hubuamm27KGAXRIiq4Fry/RbS0tJSenp6/+jkdBR8vom4YjTCigvGMMKKCa8I777zDnj17qK6uFkZUcE3o6elh9uzZ7N69+4YvbSv460HUDaMRRlQwnhFGVCAQCASfGETdMBphRAXjGWFEBQKBQPCJQdQNoxFGVDCeEUZUIBAIBJ8YRN0wGmFEBeMZYUQFAoFA8IlB1A2jEUZUMJ4RRlQgEAgEnxhE3TCa8WREX3vtNVKplFiB72+ED1ohD4QRFQgEAsEnCFE3jOZGG9GhFfiys7PFNH9/Y3zQCnkgjKhAIBAIPkGIumE0N8qIihX4BB+0Qt7AwIAwogKBQCD45CDqhtHciDwRK/AJ/TkNrZC3Z88eJkyYcF3LZlaWMKICgUAg+JgQdcNobmSeDC12Ilbg+9tkPK6QJ4yoQCAQCD42RN0wmvGSJ5cuXaKnp0eswPc3xHhcIU8YUYFAIBB8bIi6YTQiTwSCywgjKhAIBIKPDVE3jEbkiUBwGWFEBQKBQPCxIeqG0Yg8EQgu87Ea0ddee41wOMzs2bM/arQCgUAgGMdMmDCBVCo1ai7CIYTpGo3IE4HgMtfciI41Ue71ngpAIBAIBNeH4SNwhwZBDB+BK0zXaESeCASXuSZG9J133slMAzDW/FTCiAoEAsEnkyvNSzg0J6EwXaMReSIQXOaaGdG///u/v6IRFRISEhL629KNmhz7r4GsLGFEBYIh3v99+Iu/HeLRvEAgEPztMNx8jvVoXjAaYUQFgstccyM6HDFYSSAQCD7ZfNBgJcFohBEVCC7zsRpRgUAgEAgEIxFGVCC4jDCiAoFAIBBcR4QRFQguI4yoQCAQCATXEWFEBYLLCCMqEAgEAsF1RBhRgeAywogKBAKBQHAdEUZUILiMMKICgUAgEFxHhBEVCC4jjKhAIBAIBNcRYUQFgssIIyoQCAQCwXVEGFGB4DLCiAoEAoFAcB0RRlQguIwwogKBQCAQXEeEERUILiOMqEAgEAgE1xFhRAWCywgjKhAIBALBdUQYUYHgMsKICgQCgUBwHRFGVCC4jDCiAoFAIBBcR4QRFQguI4yoQCAQCATXEWFEBYLLCCMqEAgEAsF15EpGdGBggM2bN9Pb23udUyQQfDz09vaSSqUYGBi4YhhhRAUCgUAguI68v+I9ceIEPp+PrKwssrKy6OnpuTEJEwiuMT09PZly3dzczHPPPTcqjDCiAoFAIBBcR7KysnjnnXfo6ekhOzs7U1ELIyr4pDHciA4pOzub3bt3c+nSJUAYUYFAIBAIriuf/vSn+dSnPjWqghYS+lvSpz71KXbu3ElWljCiAoFAIBBcV4Yex990002jKmjRIir4pDBWi2hWVvox/YkTJwCYMGHCiHOEERUIBAKB4Dpx6dIldu7cyYQJE4QRFXziGG5EJ0yYwObNm//swCUQRlQgEAgEghtCb28vzc3NwogKPjH09PRQWlr6oWaC+P/ek/vatmMe8AAAAABJRU5ErkJggg==" />




Machine length L [mm]:
Constant C dependent on machine specification [mm]

L = (no. spindles/2 x gauge) + intermediate drive + Constant (C)
Suction
Single-sided*
Double-sided*

Connection to Murata, Savio, Schlafhorst
4 180
5 636
Maximum number of spindles
ROBOload without trolley
5 185
6 641
Up to 1 824 spindles per machine with 70 mm gauge
ROBOload “wild loading” without trolley
6 305
7 761
Up to 1 632 spindles per machine with 75 mm gauge



*Single-sided suction is available for up to 1 440 spindles. Double-sided suction always has an intermediate drive and is available from 1 296 spindles.
Intermediate drive length [600 mm]



Specifications without intermediate drive
Sample calculation for machine length L [mm]


Up to 1 248 spindles: all raw materials, 70 and 75 mm gauge
1 824 spindles, 70 mm gauge, intermediate drive, double suction, link

Up to 1 440 spindles: 100% cotton, 70 mm gauge
L = ((1 824/2) x 70) + 600 + 5 636 = 70 076 m
m




Technological data

Material
                               
Cotton, man-made fibers and
  blends up to 63 mm (2 1/2 in)               

                                                                                                                            
Yarn count

Standard
All raw materials 132 3.7 tex
Nm 7.5 270
Ne 4.5 – 160
Optional
All raw materials 132 2.4 tex
Nm 7.5 423
Ne 4.5 – 250
Twist range
200 – 3 000 T/m (5.1 – 76.1 T/in)
Draft
6 – 250-fold (mechanical)
10 – 80-fold (technological)








Machine data
Technical data
Spindle speed
Mechanical up to 25 000 rpm
Installed power
Main drive motor
55, 80, or 110 kW depending on spindle number and yarn count
Drafting system drive
Without IMD
4.4 – 8.8 kW
With IMD
10.6 – 16.7 kW
With Suessen EliTe®
4.4 – 18.0 kW
Ring rail drive
1.75 kW
Single-sided suction (50/60 Hz)
Up to 1 008 spindles
6.5 kW/6.5 kW
1 056 – 1 440 spindles
12.6 kW/12.6 kW
Double-sided suction
1 296 – 1 824 spindles
2 x 6.5 kW
Additional with EliTe®
5.5 – 20.0 kW
Power supply
Standard
400 – 420 V; 50/60 Hz
Option (with transformer)
380/440 V; 50/60 Hz
Compressed air
Min. supply pressure
7 bar
Exhaust air
Consumption

                                  
approx. 1.5 Nm3/h (up to 1 440 spindles)
approx. 1.75 Nm3/h
(up to 1 632 spindles)
  approx. 2 Nm3/h (up to 1 824 spindles)   
Single-sided suction air volume
9 400 m3/h with 1 632 spindles
Double-sided suction air volume
11 300 m3/h with 1 632 spindles
(even split of air flow rate in the
head and foot of the machine)
11 952 m3/h with 1 824 spindles
Required underpressure at transition point
50 – 200 Pa
Options
Power monitoring SPIDERweb DOFFlock
Core yarn device
Twin yarn (Com4®ring-twin) Compacting system EliTe® FLEXIstart
Roving stop device 110 kW main motor LENA spindle
ROBOload “wild loading” Man-made fiber package Q-Package

 
Number of spindles (70/75 mm gauge)
Max.
1 824/1 632
Min.
288 (144 on request)
Per section
48
Spindle gauge
70; 75 mm
Ring diameter
                                                                                                                                                                                                                                                                                                           



Tube Length
70 mm gauge
180 – 230 mm
75 mm gauge
180 – 250 mm





 Machine Width
Over center of spindle
660 mm


Doffer retracted
1 062 mm


Doffer extended
1 380 mm


 

 
                                             


















Image result for ZINSER IMPACT 72XL








TOYOTA RX300 RING FRAME

KTTM RX300G 1728 Gear Driven Draft System

The RX300 delivers the high quality, high productivity, superior operability, and easy maintenance demanded of a spinning frame.

The spindle and draft drives use new motors and inverters with high-performance, high-efficiency, energy-saving features. Instead of the induction motors used in conventional models, the RX300 Ring Spinning Frame employs a new Super-Energy-Saving Motor and Special Inverter technologies. These enable highly efficient, energy-saving operation.

Also available in EST and E-Draft models


RX300G Dimensions

MH: Middle head
PN2: Second pneumatic box

* Machine heights increase by 70 mm when fitted with a compact yarn spinning device (EST III) or TBC (Toyota automatic bobbin changer) for 250 mm (9-inch) bobbin.
** No TBC (Toyota automatic bobbin changer) is included when using the winder link.

RX300E Dimensions

MH: Middle head
PN2: Second pneumatic box

* Machine heights increase by 70 mm when fitted with a compact yarn spinning device (EST III) or TBC (Toyota automatic bobbin changer) for 250 mm (9-inch) bobbin.
** No TBC (Toyota automatic bobbin changer) is included when using the winder link.

Frame Length by the Number of Spindles

Design and specifications are current as of August 2016, but are subject to change without notice.


Required Dimensions for Auto Doffer

Common to RX300G and RX300E

auto_doffer

(A) Max. width of auto doffer (when doffing): 1,540mm(B) Min. length between center lines of 2 adjacent frames: 2,100mm – 2,300mm
(C) Min. length between center line of frame and pillar: 1,500mm











Ring Frame LR9 A/AX/AXL Series

TMD
LMW proven spinning geometry enhances the quality and productivity. LMW Ringframes with robust design helps in less maintenance cost, machines with inbuilt Energy saving solution to ensure less Spinning cost and boosts Profitability to Spinners.

Features

  • LR9A upto 2016 spindles helps in less space requirement, less humidification comparatively
  • Hook Lock Low Decibel (HLLD) spindles with less Vibration & Noise
  • In built Energy saver with IE4 main motor, Inverter Controlled IE3 suction motor,Inclined suction tube to improve effective suction
  • 4Q-2M drive for drafting
  • T-Flex drive system for quality consistency

Flexibility

  • Ne range from 8s to 200s can be spun
  • Machines with doffer and without doffer option available
  • 16 step Speed pattern curve
  • Ready to retrofit of Compact/SIRO system
  • Spindle pitch 70mm & 75mm option available with lift options from 160 to 240mm
  • Pneumatic load and Spring load both the options of Top arm are available

Automation

  • Rapid doff system (<100sec doff="" li="" time="">
  • Basket Tube loading system for ease of operation
  • Yarn Breakage monitoring system & Roving stop motion available as optional
  • Machine ready to merge with LMW Spin Connect system with an unique feature called Recipe management
  • Power Consumption can be monitored through display